CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNIT 1) - Groups and equal groups - $5 \times$ table - $10 \times$ table - $2 \times$ table - Division: sharing by 2 - Division: making groups of 2 - Odd and even numbers - Dividing by 5 - Dividing by 10 FRACTIONS (UNIT 1) - Finding half	MONEY AND DECIMALS (UNIT 1) n / a MULTIPLICATION AND DIVISION (UNIT 2) - $10 \times$ table (r) - Dividing by 10 (r) - $5 \times$ table (r) - Dividing by 5 (r) - $2 \times$ table (r) - Dividing by 2 (r) FRACTIONS (UNIT 2) - Finding half (r) - Finding one quarter - Finding quarters - Finding thirds	CALCULATION UNIT - Doubling and halving MONEY AND DECIMALS (UNIT 2) - Multiplying amounts of money - Dividing amounts of money

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Groups and equal groups In Y1 children learnt about equal and unequal groups. They began to understand the equivalence between a repeated addition expression and a multiplication expression exists due to equal groups, eg: $10+10+10=3 \times 10$ Teaching shows how the numbers in ' 3 $\times 10$ ' relate to the numbers in ' $10+10$ $+10 \prime$ $5 \times$ table Children's knowledge about multiplication is developed by learning about the $5 \times$ table. The array is introduced as a key tool for conceptual understanding. Pictures are used as prompts for writing multiplication equations, eg: $4 \times 5=20$ Teaching encourages children to explain how each term links to the context.	$10 \times$ table (r) and dividing by $10(r)$ Block 2 begins with revision of the 10 \times table and the related division facts. There are no new representations. Children continue to work with arrays, including arrays that support early understanding of the distributive property of multiplication. There is an emphasis on strengthening connections between multiplication and division and this is echoed in fluency sessions.	Doubling and halving Understanding of doubling and halving is extended to finding double/half of two-digit numbers beyond 20. The strategy modelled is to partition the two-digit number into tens and ones, find half of each part, and then combine. Children need to know half of multiples of 10 to 90 and half of the even numbers $2,4,6$ and 8. Multiplying amounts of money Children's knowledge of multiplication facts is applied to the context of money. Visual representations emphasise the repeated addition structure of multiplication. Children find missing amounts on a money multiplication grid and develop the ability to represent problems with bar models.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	$10 \times$ table Learning about the $10 \times$ table continues to make use of arrays and the interpretation of pictorial representations. Links between the 5 \times table and $10 \times$ table are also explored. $\underline{2 \times \text { table }}$ Learning about the $2 \times$ table also continues to make use of arrays. An early introduction to the distributive property of multiplication (not referred to as such) deepens understanding about multiplication. For example: $\begin{aligned} & 3 \times 2=6 \\ & 2 \times 2=4 \\ & 5 \times 2=10 \end{aligned}$	$5 \times$ table (r) and dividing by $5(r)$ As with the $10 \times$ table, there are no new representations. Again, there is an emphasis on strengthening connections between multiplication and division and this is echoed in fluency sessions. Throughout Block 2 there is a focus on applying knowledge of multiplication and division to solve problems.	Dividing amounts of money The money multiplication grid is used for division. Teaching makes explicit links with multiplication. $\begin{aligned} & 3 \times-=6 p \\ & 6 p \div 3=2 p \end{aligned}$ Children continue to develop the ability to represent problems with bar models.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Division: sharing by 2 Learning about division begins by understanding that the term divide can be used when something is separated into equal parts. Learning to divide by 2 begins with the partitive (sharing) division structure. Children are introduced to the division symbol: \div. Connections are made between division and multiplication, supported by the relationship triangle, eg: $10 \div 2=5$	2 \times table (r) Learning about the $2 \times$ table does introduce a new representation: the multiplication grid. The core purpose of the lesson is to familiarise children with how the grid works as it is likely something they will encounter. Teaching introduces the commutative property and shows how we obtain the same product regardless of the order of the factors.	The multiplication grid may look a bit like a 100 square, but it works in a very different way. The multiplication grid is actually arrays. The first grid shows 7 rows of 2. The second shows 2 columns of 7.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Odd and even numbers Learning explores dividing by 2 using the context of odd and even numbers and children learn that even numbers can be divided exactly by 2 . Dividing by 5 Learning to divide by 5 involves both sharing and grouping structures. Teaching seeks to help children to see where the quotient is in each structure: for sharing - the number in each group; for grouping - the number of groups. The relationship triangle is used to help make links between multiplication and division. Dividing by 10 Block 1 concludes with learning to divide by 10 , using both sharing and grouping structures.	Dividing by 2 Solving problems involving dividing by 2 introduces the concept of inverse. Children will need to learn the term, but understanding of it is best achieved by talking about working forwards or working backwards. In the case of $7 \times 2=\ldots$ we are working forwards. In the case of $14=\ldots \times 2$ we are working backwards or using the inverse. In the examples shown in the representations section, we can solve row 1 and row 2 by working forwards. To solve row 3 we need to work backwards.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Finding half Learning to find half of a number, a group of objects or a shape begins by revisiting the connections between the $2 \times$ table and its related division facts. The focus is on finding half of numbers to 20 . Children engage in a range of contexts that involve finding half of even numbers to 20 .	Finding half (r) Revision of finding half of numbers to 20 continues to make connections between the $2 \times$ table and its related division facts. Activities include shading shapes to show one-half and also drawing lines on grids to divide shapes into halves. Finding one quarter Children learn that one quarter of a set of objects occurs when the whole is split into 4 equal parts. Note that the $4 \times$ table has not been taught in Year 2 - it is taught in Year 3 - so children cannot use their knowledge of division facts to obtain one quarter. A range of approaches are used, including using concrete resources, encouraging the use of drawing and linking to knowledge of finding half.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			Block 1		Block 2	Block 3
Strategies/ methods	Finding three-quarters Finding three-quarters of a set is initially done through using concrete resources. Connections are also made to finding one quarter: if one quarter is 5, then two-quarters is 10 and three-quarters is 15.	Finding thirds Children learn that one third of a set of objects occurs when the whole is split into 3 equal parts. Note that the $3 \times$ table has not been taught in Year 2 -it is taught in Year 3-so children cannot use their knowledge of division facts to obtain one third. Nor can they make links to other maths facts they know. They have had experience of counting in threes and the use of concrete resources, visual representations and drawing are the prime strategies for finding thirds. As for learning to find three-quarters, children apply their knowledge of finding one-third to finding two-thirds.				

Groups and equal groups

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2 - Block $1 \quad 4 \times 5=20$

$5 \times$ table

array

$5+5+5+5=20$
repeated addition
4 groups of $5=20$
multiplication equation

Year 2 - Block 1

```
*5=20\bullet \times 10=40
```

$10 \times$ table

$$
4 \times 5=20 \quad 4 \times 10=40
$$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Year 2 - Block $1 \quad \times 2=6 \circ \times 2=4 \circ \times 2=10$

$2 \times$ table

3 groups of \square
 and

\square groups of \square

makes

which equals


```
Year 2- Block 1
```

$10 \div 5=2$

Division: sharing by 2
At the start of the lesson we learnt that the word divide can be used when something is separated into equal parts.

In maths, divide means to find how many times a number contains another.

10 sweets were shared equally between 2 children. Each child received 5 sweets. 10 divided by 2 is 5 . $10 \div 2=5$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2 - Block 1 14\div2=7
```

Division: making groups of 2

quotitive (grouping) division structure

relationship triangle

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

The numbers on the left are called odd numbers. The numbers on the right are called even numbers.

Even numbers can be divided exactly by 2.

```
Year 2- Block 1
15\div5=3
```

Dividing by 5

partitive (sharing) division structure

quotitive (grouping) division structure

relationship triangle

Dividing by 10

70 squares are shared between 10 people. Each person receives 7 squares.

$$
70 \div 10=7
$$

partitive (sharing) division structure

70 squares are put in groups of 10. There are 7 groups.

$$
70 \div 10=7
$$

quotitive (grouping) division structure

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2- Block }
1/2 of 16=8
```

Finding half

$$
8 \times 2=16 \quad 16 \div 2=8
$$

1

$$
\frac{1}{2} \text { of } 16=8
$$

16 squares altogether
$\frac{1}{2}$ of $16=8$

Mia bought a bag of cherries. She ate half the number of cherries in the bag. Mia had 8 cherries left. How many cherries did Mia buy?

```
Year 2 - Block 2 6 < 10=60\bullet60\div10=6
```

$10 \times$ table (r) and dividing by $10(r)$

$$
6 \times 10=60
$$

array showing 6 groups of 10 making 60

$$
60 \div 10=6
$$ array of 60 squares divided into 6 groups of 10 emphasise connections between multiplication and division

```
Year 2-Block 2
```

$5 \times$ table (r) and dividing by $5(r)$

applying knowledge of multiplication and division to solve problems

commutative property of multiplication on the multiplication grid

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2 - Block 2
Dividing by 2 (r)

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2-Block 2
\(1 / 2\) of \(16=8\)
```

Finding half (r)

$$
8 \times 2=16 \quad 16 \div 2=8
$$

16 squares altogether. $1 / 2$ of $16=$

There are 8 squares on each side of the line.

8 is half of 16 .

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 2

```
Year 2-Block 2 1/4 of 20=5
```


Finding one quarter

$$
\begin{gathered}
\text { Finding } \frac{1}{4} \text { is the same as } \\
\text { dividing by } 2 \\
\text { and then dividing by } 2 \text { again. }
\end{gathered}
$$

5 is $1 / 4$ of 20.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION
Year 2 - Block $2 \quad 3 / 4$ of $20=15$

Finding three-quarters

$$
\begin{aligned}
& \mathbf{1 / 4} \text { of } \mathbf{2 0}=\square \\
& \mathbf{2} / \mathbf{4} \text { of } \mathbf{2 0}=\square \\
& \mathbf{3} / \mathbf{4} \text { of } \mathbf{2 0}=\square
\end{aligned}
$$

Year 2 - Block $2 \quad 2 / 3$ of $27=18$

Finding thirds
\square counters were shared into \square equal groups.


```
Year 2-Block 3
1/2 of 32=16
```


Doubling and halving

numeric representation showing half of 32

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 2

Year 2 - Block $3 \quad 5 p \times 4=20 p$

Multiplying amounts of money

\times	1	2	3	4	5	6
2	$2 p$	$4 p$	$6 p$	$8 p$	$10 p$	$12 p$
20	$5 p$	$10 p$	$15 p$	$20 p$	$25 p$	$30 p$
	$10 p$	$20 p$	$30 p$	$40 p$	$50 p$	$60 p$

money multiplication grid

Chloe has 5p.
Grace has four times as much money as Chloe.
How much money does Grace have?

Grace has 20p.

representing problems with the bar model

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2-Block 3
```

Dividing amounts of money

\times	3	9	6	5	7	2	Oliver has 60p. He spends the same amount every day for 10 days. How much does he spend each day?	
	6p	18p	12p	10p	14p	4p	\qquad	F-5
	30p	90p	60p	50p	70p	20p	$60 p \div 10=6 p$	
	15p	45p	30p	25p	35p	10p	Oliver spends 6p every day for 10 days.	

money multiplication grid used for division
representing problems with the bar model

