

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

INTRODUCTION

This document provides an overview of the content and methods encountered in each year group from Year 1 to Year 6. For Years $1-4$ it also includes the visual representations of the methods. (In Year 5 and 6 there are no new methods and the representations encountered are the same as in earlier years. What is different is the range of number that children work with.)

For each year group in Years 1-4 the document provides:
i. a content summary section;
ii. details about the approaches used for teaching the above;
iii. the representations used.
(For Year 5 and 6 the document contains (i) and (ii).)
The content summary sections (i) and the details about the approaches used sections (ii) include content from:

- addition and subtraction units 1 and 2 ;
- the Block 3 calculation unit;
- money and decimals units;
- fractions unit 2 (Years 3-6).

The representations sections do not include the representations used in money/decimals units or fractions units. (These representations are essentially the same as those used in the main addition and subtraction units.)

The document is provided in several versions:

- whole school version (this document);
- year group specific versions;
- a Key Stage 1 only version (for infant schools).

For Years 1-4 there are two versions of each year group specific version:

- a landscape version, like a PowerPoint slide, containing (i), (ii) and (iii);
- a portrait version of the representations section (iii) with notes to support the representations.

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 1			
	Block 1	Block 2	Block 3
Calculation content	CALCULATION (UNIT 1) - Addition facts for 5-10 CALCULATION (UNIT 2) - Subtraction from 5-10 MONEY (UNIT 1) - Adding amounts to a total of 10p - Subtracting from a total of up to 10p	CALCULATION (UNIT 3) - Number bonds for ten (r) - Adding to numbers to ten and related subtraction facts (11-20) CALCULATION (UNIT 4) - Add and subtract to/from 11-15 CALCULATION (UNIT 5) - Add and subtract to/from 11-15 (r) - Add and subtract to/from 16-18 - Adding single digit numbers to 11 19 - Subtracting single digit numbers from 11 to 19 - Number bonds for 20 MONEY (UNIT 2) - Adding amounts to a total of 20p - Subtracting from a total of up to 20p	Ongoing practice of number bonds for numbers to ten and related facts.

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods	Addition facts for 5-10 The core representation that supports children's learning of addition facts for $5-10$ is the tens frame with two-colour counters. Children use their ability to subitise to articulate addition facts for numbers to 10 . Teachers need to have two tens frames with two colour counters on display throughout Year 1 and children need access to their own tens frames and counters. Other representations of facts for 5-10 are also encountered within the lessons to provide more opportunities for children to derive number facts. These include dominoes, bar models and partwhole models. Subtraction from 5-10 The first two subtraction lessons focus on subtraction as reduction (taking away) and make use of pictorial representations to support this. From lesson three, as for learning about addition facts, the core representation that supports children's learning of subtraction facts for $5-10$ is the tens frame with two-colour counters.	Number bonds for ten (r) Cuisenaire $®$ rods were encountered in some lessons in Block 1, but were not essential for successful learning. In this revision lesson they are integral to the lesson. Knowing additive facts to 10 is a key goal for the end of Year 1 and ongoing practise is essential to achieve this. It is suggested that ongoing number facts practice for $5-10$ is supported by additional resources from this point, including Cuisenaire rods. During this practice children need to be taught to derive additive facts within 10 from previously memorised facts. For example, using knowledge of doubles to derive near doubles, eg: $\begin{aligned} & 5+4= \\ & 4+4+1=9 \end{aligned}$	Ongoing practice of number bonds for numbers to ten and related facts.

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods	Subtraction from 5-10 (ctd) The relationship triangle is introduced during the lesson on subtracting from 9. Adding amounts to a total of 10 p As for earlier work on addition facts for 5-10 the tens frame with two-colour counters supports understanding about adding amounts to a total of 10 p . Representations of coins are also used. Subtracting from a total of up to 10p The core representation that supports children's learning of subtraction from amounts to a total of 10p is the tens frame with two-colour counters. Representations of coins are also used.	Adding to numbers to ten and related subtraction facts (11-20) Children need secure recall of facts such as $10+1,10+2$ and their related subtraction facts (11-1, 12-2). This will support later work on additive facts that bridge ten using the making the next/previous ten method: $8+6=8+2+4=10+4=14$ The lessons on adding to numbers to ten and related subtraction facts make extensive use of number tracks, tens frames and place value cards to support understanding. Add and subtract to/from 11-15 Children engage in a series of lessons about making $11,12,13$ etc with numbers other than 10 and 1, 10 and 2, 10 and 3. The purpose is to lay the foundations of understanding that will support the ability to use the making the next/previous ten strategy in Year 2 and beyond.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods		Whole lessons are spent exploring all the ways to make numbers from 11-15 (and the related subtraction facts). For example $15=9+6=8+7=7+8=6+$ 9 Tens frames support the understanding that $9+6=10+5$. Children also encounter the numeric representation for this. Add and subtract to/from 11-15 (r) Revision of making next/previous ten Relationships - using an anchor fact to find new facts: $10+5=15$ so $9+5$ is one less than 15 Add and subtract to/from 16-18 Same approach as for adding and subtracting to/from 11-15 in Block 2.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods		Adding single digit numbers to 11-19 Using known facts to derive new facts, eg: $6+2=8 \text { so } 16+2=18$ Also partitioning first addend into tens and ones then combining ones, eg: $16+2=10+6+2$ Subtracting single digit numbers from 11 to 19 Similar approach to above, eg: $6-2=4 \text { so } 16-2=14$ Number bonds for 20 The core representations that support children's learning of facts for 20 (and related facts) is tens frames with twocolour counters and the relationship triangle. Adding amounts to a total of 20p and subtracting from a total of up to 20p Within the lessons coins are the core representation. Teachers may want to support the calculation process for some children by using tens frames with two-colour counters.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 1 - Block $1 \quad 4+5=9$

Addition facts for 5-10

$$
4+5=9
$$

tens frame

bar model

part-whole model

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 1 - Block 1 9-5=4
```

Subtraction from 5-10

Children encounter two representations of tens frames.
The first reflects the nature of the concrete apparatus - two-colour counters.
The second representation shows the subtrahend greyed out. This is often used when addition and subtraction calculations are displayed on the same slide. (See next page.)

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 1 - Block 2
Number bonds for ten (r)

Cuisenaire ${ }^{\circledR}$ rods
Year 1 - Block $2 \quad 10+4=14$ •14-4=10

Adding to numbers to ten and related subtraction facts (11-20)

\section*{| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- |}

tens frames

4
place value cards

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 1-Block 2 8+7=15 0 15-7=8
```

Add and subtract to/from 11-18

tens frames


```
Year 1- Block 2 6 +2=8 0 16 +2=18
```

Adding single digit numbers to 11-19


```
Year 1- Block 2 8-2=6 0 18-2=16
```

Subtracting single digit numbers from 11-19

tens frames

numeric representation

```
Year 1- Block 2
```


$$
20-9=11
$$

Year 2			
	Block 1	Block 2	Block 3
Calculation content	ADDITION AND SUBTRACTION (UNIT 1) - Number bonds for 20 (r) - Add a two-digit number and ones no exchanging - Add multiples of ten - Friendly number pairs - Subtract ones from a two-digit number - no exchanging - Subtract multiples of ten - Subtract ones from a multiple of ten - Add single digit numbers bridging ten (eg $8+6$) - Subtract single digit numbers from 11-18 bridging ten (eg 15-8)	MONEY (UNIT 1) - Finding the total (two-digit amount +1 digit amount (no exchanging); add multiples of ten pence; adding single digit pounds bridging ten pounds) - Change (change from 20p; change from 50p) ADDITION AND SUBTRACTION (UNIT 2) - Add a two-digit number and ones bridging the next ten (eg $28+6$) - Add 3 one-digit numbers - Subtract ones from a two-digit number - making the previous ten (eg 25-8) - Adding 2 two-digit numbers - Subtracting a two-digit number from a multiple of ten - Subtracting a two-digit number from a two-digit number	CALCULATION UNIT - Adding two 2-digit numbers (r) - Subtracting a 2-digit number from a 2-digit number (r) MONEY (UNIT 2) - Adding coins (finding different combinations to make totals) - Adding notes (adding multiples of ten and five) - Subtracting amounts of money (eg $£ 60-£ 15=£ 60-£ 10-£ 5)$

| Year 2 | | | Block 1 |
| :--- | :--- | :--- | :--- |\quad| Block 2 |
| :--- |

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Subtract ones from a two-digit number - no exchanging Counting back; partitioning minuend; column method. Subtract multiples of ten Use known facts, eg: $5-2=3$ so 5 tens -2 tens $=3$ tens. Subtract ones from a multiple of ten Use known facts, eg: $10-2=8 \text { so } 30-2=28$ Add single digit numbers bridging ten Making the next ten, eg: $8+6=8+2+4$ Subtract single digit numbers from 11- $18 \text { bridging ten }$ Making the previous ten, eg: $15-8=15-5-3$	Add a two-digit number and ones Making the next ten, eg: $28+6=28+2+4$ expanded column method; compact column method. Add 3 one-digit numbers Add 3 one-digit numbers Children use their developing ability to make the next ten to add 3 onedigit numbers. The core representation is the tens frame, eg: $\begin{aligned} & 9+7+5= \\ & 16+5= \\ & 16+4+1=21 \end{aligned}$ Subtract ones from a two-digit number Making the previous ten; compact column method. Adding 2 two-digit numbers Partitioning addends into tens and ones and combining; expanded column method; compact column method.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Subtracting a two-digit number from a multiple of ten Partitioning the subtrahend, eg: $30-19=30-10-9$.		
		Subtracting a two-digit number from a two-digit number Partitioning the subtrahend; compact column method.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

YEAR 2

```
Year 2 - Block 1 8+2=10*18+2=20
```

Number bonds for 20

number track - counting on


```
Year 2- Block 1 
```

Add multiples of ten

3 ones + 2 ones =
5 ones
$30+20=$

3 tens + 2 tens $=$ $3 \underline{0}+2 \underline{0}=$

50

5 tens 50

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 2 - Block 1

Friendly number pairs

number bonds from Year 1


```
Year 2- Block 1
5-2=3\bullet50-20=30
```

Subtract multiples of ten

5 ones -2 ones $=3$ ones
50-20 = 30

5 tens - 2 tens = 3 tens
$5 \underline{0}-2 \underline{0}=\quad 3 \underline{0}$

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 2-Block 1
    10-2=8-30-2 = 28
```

Subtract ones from a multiple of ten


```
Year 2 - Block 1 8+7=15 0 15-7=8
```

Add single digit numbers bridging ten/ subtract single digit numbers from 11-18 bridging ten

ens frames

```
Year 2-Block 2
```

$26+6=32$

Add a two-digit number and ones

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

making the next ten
100 square representation

making the next ten tens frame representation


```
Year 2-Block 2

Add a two-digit number and ones
\begin{tabular}{|c|c|c|}
\hline & T & 0 \\
\hline & 2 & 6 \\
\hline+ & & 6 \\
\hline & 1 & 2 \\
\hline & 2 & 0 \\
\hline & 3 & 2 \\
\hline & & \\
\hline
\end{tabular}
expanded column method

compact column method

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 2 - Block 2
\(9+7+5=21\)
Add 3 one-digit numbers

tens frames

dominoes


Cuisenaire \({ }^{\circledR}\) rods
```

Year 2- Block 2 32-7=25

```

Subtract ones from a two-digit number
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & & & & & & & \\
\hline & 12 & 13 & 14 & & 16 & 17 & & & & \\
\hline & 22 & & 24 & & & & & & & \\
\hline & & 33 & 34 & 35 & 析 & & & & & \\
\hline & & 43 & 44 & 45 & 46 & & & 4 & & \\
\hline 51 & 52 & 53 & 54 & 55 & 56 & & & & & \\
\hline & & & & & & & & & & \\
\hline & 72 & 73 & 74 & 75 & 76 & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}
making the previous ten 100 square representation

making the previous ten tens frame representation

making the previous ten numeric representation

compact column method
```

Year 2- Block 2
24+18=42

```

Adding 2 two-digit numbers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
\hline 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
\hline 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
\hline 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\hline
\end{tabular}

partitioning both addends:
combine the tens; combine the ones; combine the results
partitioning the second addend100 square representation
Year 2 - Block \(2 \quad 24+18=42\)

\section*{Adding 2 two-digit numbers}
\begin{tabular}{|c|c|c|}
\hline & T & O \\
\hline+ & 2 & 4 \\
\hline+ & 1 & 8 \\
\hline & 1 & 2 \\
\hline & 3 & 0 \\
\hline & 4 & 2 \\
\hline & & \\
\hline
\end{tabular}
expanded column method

compact column method

\section*{Add the ones.}

4 ones +8 ones \(=12\) ones
12 ones \(=1\) ten and 2 ones
Add the tens.
2 tens + 1 ten + 1 ten = 4 tens

Subtracting a two-digit number from a multiple of ten
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{11} & & & & & & & & \\
\hline & & & & & & & & \\
\hline 21 & 22 & 23 & 24 & 25 & 2627 & 728 & 29 & \\
\hline 31 & 32 & 33 & 34 & 3536 & 3637 & 73 & 39 & 40 \\
\hline 41 & 42 & 43 & 44 & 4546 & 4647 & 748 & 49 & 50 \\
\hline 51 & 52 & 53 & & & 5657 & 58 & 59 & \% \\
\hline 61 & 62 & 63 & 64 & 6566 & 6667 & 768 & 69 & 70 \\
\hline 71 & 72 & 73 & 74 & & & & & 80 \\
\hline 81 & 82 & 83 & 848 & 8586 & 8687 & 788 & & 90 \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 56 & 67 & 78 & & 910 \\
\hline \multicolumn{9}{|r|}{4-1546913+184? 20} \\
\hline & & & & & & & & \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 373 & 38 & 3940 \\
\hline 41 & 42 & 43 & 44 & 454 & 46 & 4748 & 48 & 4950 \\
\hline 51 & 52 & 53 & 54 & 55 & 56 & 575 & 58 & 59 \\
\hline 61 & 62 & 63 & 646 & 65 & 66 & 6768 & 686 & 6970 \\
\hline 71 & 72 & 73 & 74 & 757 & 767 & 77 & 78 & 7980 \\
\hline 81 & & & & & & & & \\
\hline 91 & & & & & & & & \\
\hline
\end{tabular}
\(30-19\) is the same as
\(30-10-9\).
\(30-19\) is the same as
30-9-10.

\section*{Year 2 - Block 2 \\ \(30-19=11\)}

Subtracting a two-digit number from a multiple of ten

partitioning the subtrahend

Year 2-Block \(2 \quad 43-29=14\)

\section*{Subtracting a two-digit number from a two-digit number}

partitioning the subtrahend

Subtracting a two-digit number from a two-digit number


\section*{Subtract 9 ones.}

\section*{There are not enough ones.}

Let's exchange 1 ten for 10 ones.

Subtract 9 ones.

Subtract 2 tens.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Year 3} \\
\hline & Block 1 & Block 2 & Block 3 \\
\hline Calculation content & \begin{tabular}{l}
ADDITION AND SUBTRACTION (UNIT 1) \\
- + and - facts for 100 using multiples of 5 and 10 \\
- Add a 3-digit number and ones \\
- Subtract ones from a three-digit number (exchanging) \\
- Add a three-digit number and tens; subtract tens from a threedigit number \\
- Adding multiples of ten beyond one hundred \\
- Subtract multiples of ten \\
- Add numbers with up to threedigits (without and with exchanging) \\
- Subtract numbers with up to three-digits (without and with exchanging)
\end{tabular} & \begin{tabular}{l}
MONEY (UNIT 1) \\
- Making \(£ 1, £ 2\) and \(£ 5\) \\
- Adding 2 two-digit amounts (eg 35p
\[
+25 p=30 p+20 p+5 p+5 p)
\] \\
- Adding pounds and pence, including bridging through £1 (eg £4 and \(70 \mathrm{p}+£ 3\) and 60 p ) \\
ADDITION AND SUBTRACTION (UNIT 2) \\
+ and - facts for 100 and related facts \\
- Add a three-digit number to a three-digit number (exchanging ones to tens and tens to hundreds) \\
- Subtract a three-digit number from a three-digit number (exchanging hundreds to tens and tens to ones) \\
FRACTIONS (UNIT 2) \\
- Add and subtract fractions with the same denominator \\
- Subtract from one whole
\end{tabular} & \begin{tabular}{l}
CALCULATION UNIT \\
- Scaling additive facts by ten \\
- Add a three-digit number to a three-digit number ( \(r\) ) \\
- Subtract a three-digit number from a three-digit number (r) \\
MONEY (UNIT 2) \\
- Subtracting amounts of money (empty number line and subtracting by partitioning the minuend)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Year 3} \\
\hline & Block 1 & Block 2 & Block 3 \\
\hline Strategies/ methods & \begin{tabular}{l}
+ and - facts for 100 using multiples of 5 and 10 \\
Teaching needs to stress how to avoid common errors when calculating complements to 100, eg: \\
\(65+45=110\) instead of 100 . See notes in lesson. \\
Add a 3-digit number and ones \\
Making the next ten, eg:
\[
167+9=170+3+6
\] \\
Subtract ones from a three-digit number \\
Making the previous ten, eg:
\[
167-9=167-7-2
\] \\
Add a three-digit number and tens; subtract tens from a three-digit number \\
For addition: partition the three-digit number into hundreds and tens and ones, eg:
\[
258+30=250+8+30=280+8
\] \\
For subtraction: partition the minuend, eg:
\[
258-30=58-30+200
\]
\end{tabular} & \begin{tabular}{l}
Making \(£ 1, £ 2\) and \(£ 5\) \\
Representations of coins and money number lines support calculating amounts to \(£ 1, £ 2\) and \(£ 5\). \\
Adding 2 two-digit amounts \\
Both amounts are partitioned into multiples of ten pence and multiples of one pence, eg:
\[
35 p+25 p=30 p+5 p+20 p+5 p
\] \\
Adding pounds and pence, including bridging through \(£ 1\) \\
The core strategy is to add the pounds, then add the pence, then combine, eg: \\
£4 and 70p \(+£ 3\) and 60 p = \\
£7 and 130p = \\
£8 and 30p \\
NB Remember that children in Year 3 have not formally encountered decimal notation. Pounds and pence are presented as either \(£ 8\) and 30 p or \(£ 8.30\) - but the decimal is referred to as a separator.
\end{tabular} & \begin{tabular}{l}
Scaling additive facts by ten \\
Use known facts, eg: \\
\(5-2=3\) so 5 tens -3 tens \(=2\) tens. \\
Add a three-digit number to a threedigit number \\
Partitioning to expand second addend; partitioning both addends; compensation. \\
Subtract a three-digit number from a three-digit number \\
Counting on using empty number line; compensation. \\
Subtracting amounts of money Empty number line and subtracting by partitioning the minuend.
\end{tabular} \\
\hline
\end{tabular}

\section*{CALCULATION POLICY FOR ADDITION AND SUBTRACTION}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Year 3} \\
\hline & Block 1 & Block 2 & Block 3 \\
\hline Strategies/ methods & \begin{tabular}{l}
Adding multiples of ten Making the next hundred, eg:
\[
80+60=80+20+40 .
\] \\
Subtract multiples of ten Making the previous hundred, eg:
\[
140-60=140-40-20 .
\] \\
Add numbers with up to three-digits (three-digit + two-digit) \\
Partitioning the second addend 100 square representation; column method. \\
Subtract numbers with up to threedigits (three-digit - two-digit) Using hundred square; counting back on empty number line; column method.
\end{tabular} & \begin{tabular}{l}
+ and - facts for 100 and related facts For addition: partitioning both addends into ten and ones and combining parts, eg:
\[
73+27=70+3+20+7=90+10
\] \\
For subtraction: partitioning the subtrahend, eg:
\[
100-68=100-60-8 ;
\] \\
counting on with number line. \\
Add a three-digit number to a threedigit number \\
Column method (exchanging ones to tens and tens to hundreds). \\
Subtract a three-digit number from a three-digit number Column method (exchanging hundreds to tens and tens to ones).
\end{tabular} & \\
\hline
\end{tabular}

CALCULATION POLICY FOR ADDITION AND SUBTRACTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Year 3} \\
\hline & Block 1 & Block 2 & Block 3 \\
\hline Strategies/ methods & & \begin{tabular}{l}
Add and subtract fractions with the \\
same denominator \\
Teaching uses dual-naming. \\
For example:
\[
\frac{2}{6}+\frac{3}{6}=
\] \\
First say: \\
Two one-sixths and three one-sixths = five one-sixths. \\
(Unitising the fraction by verbally describing a non-unit fraction as a multiple of its unit fraction - this is important to avoid the misconception that two-sixths plus three-sixths = five twelfths. \\
Then say: \\
Two sixths plus three sixths = five sixths. \\
Subtract from one whole \\
Key teaching point is that when the numerator and denominator are the same the fraction is equivalent to a whole number. For example:
\[
1-\frac{5}{6}=\frac{6}{6}-\frac{5}{6}
\]
\end{tabular} & \\
\hline
\end{tabular}

CALCULATION POLICY FOR ADDITION AND SUBTRACTION
```

Year 3-Block 1

```
+ and - facts for 100 using multiples of 5 and 10

bar model supports understanding that one addend decreases by 5 and the other increases by 5

partitioning both addends:
combine the tens; combine the ones; combine the results
\(167+9=176\)
```

Year 3-Block 1

```
```

Year 3-Block 1

```
```

Year 3-Block 1

```
\(167+9=176\)

Add a 3-digit number and ones
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 \\
\hline 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 \\
\hline 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 \\
\hline 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 \\
\hline 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 151 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 \\
\hline 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170 \\
\hline 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 \\
\hline 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 \\
\hline 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 \\
\hline
\end{tabular}

making the next ten numeric representation
making the next ten -
100 square representation
Year 3-Block \(1 \quad 167-9=158\)

Subtract ones from a three-digit number
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 \\
\hline 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 \\
\hline 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 \\
\hline 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 \\
\hline 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 151 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 \\
\hline 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170 \\
\hline 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 \\
\hline 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 \\
\hline 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 \\
\hline
\end{tabular}

making the previous ten numeric representation
making the previous ten -
100 square representation
```

Year 3-Block 1 258+30=288

```

Add a three-digit number and tens


partition the three-digit number into [a] hundreds and tens [b] ones;
partition the two-digit multiple of ten into tens and ones; combine.

\section*{CALCULATION POLICY FOR ADDITION AND SUBTRACTION}
Year 3 - Block \(1 \quad 258-30=228\)

\(258-30=228\)


\section*{CALCULATION POLICY FOR ADDITION AND SUBTRACTION}
```

Year 3- Block 1 80+70=150 - 150-70 = 80

```

Add multiples of ten bridging hundreds/ subtract multiples of ten bridging hundreds

numeric representations
numic
```

Year 3 - Block 1 246 + 35 = 281

```

Add numbers with up to three-digits
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 201202 & 2032 & 204205 & 20620 & 20720 & 20820 & 09210 \\
\hline 211212 & 2132 & 214215 & 21621 & 2172 & 2182 & 19220 \\
\hline 221222 & 2232 & 224225 & 22622 & 22722 & 22822 & 29230 \\
\hline 231232 & 2332 & 234235 & 23623 & 23723 & 23823 & 23920 \\
\hline 241242 & 2432 & 244245 & & 24724 & 24824 & 249250 \\
\hline 251252 & 2532 & 254255 & & 25725 & 25825 & 5 \\
\hline 261262 & 2632 & 264265 & 26626 & 26726 & 26826 & 66 \\
\hline 271272 & 2732 & 274275 & 27627 & 27727 & 278 & 280 \\
\hline 281282 & & 284285 & & 28728 & 28828 & 289290 \\
\hline 291292 & 2932 & 294295 & 29629 & 29729 & 29829 & 299300 \\
\hline
\end{tabular}


\section*{CALCULATION POLICY FOR ADDITION AND SUBTRACTION}

```

Year 3 - Block 2 54+46 = 100

```

\section*{+ and - facts for 100 and related facts}


partitioning both addends:
combine the tens; combine the ones; combine the results
Year 3 - Block \(2 \quad 100-46=54\)
+ and - facts for 100 and related facts

partitioning the subtrahend

number line representation

\section*{的ECTIVE MATHS}
```

Year 3 - Block 2 367 + 256 = 623

```

Add a three-digit number to a three-digit number

```

Year 3-Block 2 341-187=154

```

Subtract a three-digit number from a three-digit number


\section*{Subtract the ones.}

There are not enough ones. Let's exchange.
Exchange 1 ten for 10 ones.
Subtract the ones.
11 ones -7 ones \(=4\) ones

\section*{Subtract the tens.}

There are not enough tens. Let's exchange.
Exchange 1 hundred for 10 tens.
13 tens -8 tens \(=5\) tens

```

Year 3 - Block 2 303-175 = 128

```

Subtract a three-digit number from a three-digit number


\section*{Subtract the ones.}

There are not enough ones. Let's exchange. Exchange 1 hundred for 10 tens.
Exchange 1 ten for 10 ones.
Subtract the ones.
13 ones -5 ones \(=8\) ones
Subtract the tens.
9 tens -7 tens \(=2\) tens
Subtract the hundreds.
2 hundreds - 1 hundred = 1 hundred
```

Year 3 - Block 3 3+2=5 0 30+20=50

```

\section*{Scaling additive facts by ten}

base ten supports understanding of scaling
3 ones + 2 ones =

Scaling additive facts by ten

The way you use language and write can really support children.

Say:
6 tens +8 tens \(=14\) tens
14 tens = one hundred and forty
Write as you say:
\(6 \underline{0}+8 \underline{0}=14 \underline{0}\)
\(14 \underline{0}=140\)
You are writing and underlining
the digit zero as you say 'tens'.
6 tens \(=6 \underline{0}\)
```

Year 3-Block 3

Scaling additive facts by ten
$5-2=3$
ตอสดロ
5 ones -2 ones $=3$ ones
50-20 = 30

5 tens - 2 tens = 3 tens $5 \underline{0}-2 \underline{0}=\quad 3 \underline{0}$

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 3-Block $3 \quad 375+129=504$

Add a three-digit number to a three-digit number

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 3 - Block $3 \quad 608-489=119$

Subtract a three-digit number from a three-digit number

608-489 =

$608-500=108$

119

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4			
	Block 1	Block 2	Block 3
Calculation content	ADDITION AND SUBTRACTION (UNIT 1) - + and - facts for 100 (r) - Friendly number pairs - Scaling addition and subtraction number facts by 100 - Mental calculation: - Making next ten/previous ten - Near doubles - Left to right addition - Empty number line - Add a four digit number to a four digit number (exchanging ones, tens and hundreds) - Subtract a three-digit number from a three-digit number (exchanging hundreds for tens and tens for ones)	MONEY AND DECIMALS (UNIT 1) n/a ADDITION AND SUBTRACTION (UNIT 2) - Mental strategies for addition and subtraction (r) - Making the next/previous thousand - Subtract a four-digit number from a four-digit number FRACTIONS (UNIT 2) - Adding like fractions where sum is equal to or greater than one - Adding improper and mixed fractions - Subtracting fractions from whole numbers - Subtraction of improper and mixed fractions	CALCULATION UNIT - Different methods for addition (a) - Different methods for addition (b) - Different methods for subtraction MONEY (UNIT 2) - Calculating with money - Add decimal numbers - Subtract decimal numbers

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	+ and - facts for 100 (r) As in Year 3, teaching needs to stress how to avoid common errors when calculating complements to 100 . (eg: $64+46=110$ instead of 100 .) See notes in lesson. The core strategy for addition is to partition the addends in to tens and ones, combine the tens, combine the ones, combine the results. For subtraction the strategy is to partition the subtrahend: partition the subtrahend into tens and ones; subtract the tens from the minuend; subtract the ones from the result. Eg: $100-46=100-40-6$ Friendly number pairs Children first encountered friendly numbers in Year 2. Friendly numbers fit together to make a number that is easy to work with. Re-ordering is often used to simplify calculations. Eg: $14+37+6$ becomes $14+6+37$ which becomes $20+37$.	Mental strategies for addition and subtraction The unit begins with revisiting efficient strategies for mental calculation including near doubles and making the next/previous ten. Making the next/previous thousand Children's knowledge of making the next/previous is extended to examples where they make the next/previous thousand, eg: $900+600=900+100+500$ Subtract a four-digit number from a four-digit number Column method (exchanging thousands for hundreds, hundreds for tens and tens for ones).	Different methods for addition Working with four-digit numbers children explore the following methods: - column method; - partitioning the second addend; - making the next hundred; - compensation. Different methods for subtraction Working with four-digit numbers children explore the following methods: - column method; - counting on using empty number line; - compensation.

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Scaling addition and subtraction number facts by 100 Use known facts, eg: $5+6=11 \text { so }$ 5 hundreds +6 hundreds $=11$ hundreds $=$ 1 thousand and 1 hundred $5 \underline{00}+6 \underline{00}=11 \underline{00}=1,100$	Adding like fractions less than one where sum is equal to or greater than one Continue to develop the fact that when the denominators are the same, we add the numerators. Also introduce making the next whole, eg: $\frac{5}{6}+\frac{5}{6}=\frac{5}{6}+\frac{1}{6}+\frac{4}{6}=1 \frac{4}{6}$ Adding improper and mixed fractions Same approaches as above, with numbers greater than one. An improper fraction example: $\frac{7}{6}+\frac{7}{6}=\frac{14}{6}=2 \frac{2}{6}=2 \frac{1}{3}$ (when the denominators are the same, we add the numerators) or $\frac{7}{6}+\frac{7}{6}=\frac{7}{6}+\frac{5}{6}+\frac{2}{6}=\frac{12}{6}+\frac{2}{6}=2 \frac{2}{6}$ (making the next whole).	Calculating with money (r) Revision of methods for addition and subtraction of money. For addition the core strategy is to add the pounds, then add the pence, then combine, eg: $£ 4$ and $70 \mathrm{p}+£ 3$ and 60 p $=$ £7 and 130p = £8 and 30p For subtraction, the strategies are using an empty number line and subtracting by partitioning the minuend. Adding decimal numbers Children learn to add ones and tenths using a strategies they are very familiar with: partitioning both addends and making the next whole. Subtracting decimal numbers Empty number line and subtracting by partitioning the minuend.

-

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Mental calculation - Making next ten/previous ten - Near doubles - Partitioning both addends - left to right addition Partitioning the second addend empty number line representation Children's knowledge of the making next/previous ten is extended to fourdigit numbers plus/minus one digit numbers. Application of near doubles is applied to examples such as $72+74=72+72+2$ Children learn that when we calculate with column methods we work from the smallest units to the largest; when we calculate mentally we tend to work with the largest parts first. Empty number lines are used to support consolidation of adding by partitioning the second addend, eg: $335+226=335+200+20+6$	Subtracting fractions from whole numbers Using improper fractions, eg: $3-1 \frac{5}{6}=\frac{18}{6}-\frac{11}{6}=\frac{7}{6}=1 \frac{1}{6}$ Counting back, including partitioning the subtrahend and counting back, eg: $3-1 \frac{5}{6}=3-1-\frac{5}{6}=2-\frac{5}{6}=1 \frac{1}{6}$ Subtraction of improper and mixed fractions Using improper fractions, eg: $3 \frac{1}{5}-1 \frac{2}{5}=\frac{16}{5}-\frac{7}{5}=\frac{9}{5}=1 \frac{4}{5}$ Making the previous whole, eg: $3 \frac{1}{5}-1 \frac{2}{5}=3 \frac{1}{5}-\frac{1}{5}-1 \frac{1}{5}=3-1 \frac{1}{5}=2 \frac{4}{5}$	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4	Block 1	Block 2	Block 3
Strategies/ methods	Add a four digit number to a four digit number Column method (exchanging ones, tens and hundreds). Subtract a three-digit number from a	three-digit number Column method (exchanging hundreds for tens and tens for ones).	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4-Block $1 \quad 54+46=100 \bullet 100-46=54$

+ and - facts for 100

partitioning both addends:
combine the tens; combine the ones; combine the results

partitioning the subtrahend

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4 - Block 1

Friendly number pairs

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 4 - Block 1 5 + 6 = 11 0500+600=1,100
```

Scaling addition and subtraction number facts by 100

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4-Block $1 \quad 1,126+7=1,133 \cdot 1,133-7=1,126$

Making next/previous ten

numeric representations of making the next/previous ten

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4-Block $1 \quad 72+74=146$

Near doubles

numeric representation for use of near doubles

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4 - Block $1 \quad 661+523=1,184$

Partitioning both addends

numeric representation of both addends being partitioned

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4 - Block $1 \quad 335+262=597$

Partitioning the second addend

$335+200+60+2=$

counting on using an empty number line

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 4-Block 1
2,879 + 1,964 = 4,843
```

Add a four digit number to a four digit number

Th	H	T	O
$+2,8$	7	9	
+	1,9	6	4
4,8	4	3	
	1	1	1

Add the ones.

9 ones +4 ones $=13$ ones
13 ones $=1$ ten and 3 ones

Add the tens.

7 tens +6 tens +1 ten $=14$ tens
14 tens $=1$ hundred and 4 tens
Add the hundreds.
8 hundreds +9 hundreds +1 hundred $=18$ hundreds $=1$ thousand and 8 hundreds
Add the thousands.
2 thousands + 1 thousand + 1 thousand = 4 thousands
column method supported by very clear use of language to ensure conceptual understanding

```
Year 4 - Block 1 400-289=111
```

Subtract a three-digit number from a three-digit number

Subtract the ones.

There are not enough ones. Let's exchange.
Exchange 1 hundred for 10 tens. Exchange 1 ten for 10 ones.
Subtract the ones.
10 ones -9 ones $=1$ one

Subtract the tens.

9 tens -8 tens $=1$ ten

Subtract the hundreds.

3 hundreds - 2 hundreds = 1 hundred

column method supported by base ten

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

YEAR 4

Year 4-Block $2 \quad 900+600=1,500 \bullet 1,500-600=900$

Making next/previous thousand

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 4 - Block $2 \quad 6,052-4,367=1,685$

Subtract a four-digit number from a four-digit number

Subtract the ones.
There are not enough ones. Let's exchange.
Exchange 1 ten for 10 ones.
Subtract the ones.
12 ones -7 ones $=5$ ones

Subtract the tens.

There are not enough tens. Let's exchange.
Exchange 1 thousand for 10 hundreds.
Exchange 1 hundred for 10 tens
14 tens -6 tens $=8$ tens

Subtract the hundreds.

9 hundreds -3 hundreds $=6$ hundreds

Subtract the thousands

5 thousands - 4 thousands = 1 thousand
column method supported by very clear use of
language to ensure conceptual understanding

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 4 - Block 3 1,375+1,129=2,504
```


Different methods for addition

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

```
Year 4 - Block 3 7,045-5,888=1,157
```


Different methods for subtraction


```
7,045-5,888 = 1,157
```

Different ways of using compensation

Year 5			
	Block 1	Block 2	Block 3
Calculation content	ADDITION AND SUBTRACTION (UNIT 1) - Facts for one and ten with decimal numbers to one decimal place - Complements for one thousand and related facts - Mental calculation - Making next ten/previous ten - Near doubles - Calculation strategies - Left to right addition - Number line methods - Partitioning the minuend - Add numbers with more than four digits (with exchanging) - Subtract numbers with more than four digits (with exchanging)	MONEY AND DECIMALS (UNIT 1) n/a ADDITION AND SUBTRACTION (UNIT 2) - Addition and subtraction with decimal numbers to two decimal places (facts for one and related facts) - Strategies for adding lots of numbers - Methods for addition - Making the next hundred - Near doubles - Methods for subtraction - Making the previous thousand - Counting on - Compensation - Partitioning the minuend FRACTIONS (UNIT 2) - Addition of related fractions - Subtraction of related fractions	CALCULATION UNIT - Methods for addition - Partitioning both addends - Compensation - Column method - Methods for subtraction - Making the previous hundred - Counting on - Partitioning the subtrahend - Column method MONEY (UNIT 2) - Calculating amounts of money - Adding decimal numbers - Subtracting decimal numbers

Year 5			Block 1

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Mental calculation - Making next ten/previous ten - Near doubles Children's knowledge of the making the next/previous ten is applied to calculations such as $11,126+6=11,126+4+2$ They use making the next thousand and near doubles to solve calculations like $600+700$, eg: $\begin{aligned} & 600+700=600+400+300 \\ & 600+700=600+600+100 \end{aligned}$ Calculation strategies - Left to right addition - Number line methods - Partitioning the minuend Children revise the fact that when we calculate with column methods we work from the smallest units to the largest; when we calculate mentally we tend to work with the largest parts first. Empty number lines are used to support consolidation of adding by partitioning the second addend, eg: $\begin{aligned} & 2,335+1,226= \\ & 2,335+1,000+200+20+6 \end{aligned}$	Methods for addition - Making the next hundred - Near doubles Children's knowledge of the making the next hundred is applied to calculations such as $2,700+800=2,700+300+500$ They use near doubles to solve calculations like $6.3+6.5$, eg: $6.3+6.3+0.2$ Methods for subtraction - Making the previous thousand - Counting on - Compensation - Partitioning the minuend Children are now very familiar with the methods above. They use them to solve calculations like: $2,500-800=2,500-500-300$ (making previous thousand); 25,102-875 (counting on); $8,500-700=8,500-1,000+300$ (compensation); $5.26-1.75=2-1.75+3.26$ (partitioning the minuend).	Calculating amounts of money Children continue to practise calculating with money, supported by representations of coins. Adding decimal numbers Children add two decimal numbers with up to two decimal places. This includes adding numbers with different numbers of decimal places, eg: $25.76+2.9$. The column method is the core strategy used; other methods are also encouraged. Subtracting decimal numbers Children subtract two decimal numbers with up to two decimal places. This includes subtracting numbers with different numbers of decimal places, eg: $25.06+4.9$ Counting on using an empty number line is the core strategy used; other methods are also encouraged.

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Work on subtraction also involves empty number lines, for counting on, and revisits the strategy of partitioning the minuend. Add numbers with more than four digits (with exchanging) Column addition is now extended to numbers with more than four digits. Teaching revisits using compensation alongside the column method so children can evaluate the relative merits of each. Subtract numbers with more than four digits (with exchanging) Column subtraction is extended to numbers with up to five digits. Other methods are encountered (partitioning the minuend) and children are encouraged to reflect on the appropriate method for a given calculation.	Addition of related fractions Children learn that when the denominators are not the same, they need to be made the same before adding the fractions. They then use learning from Year 4 (when the denominators are the same, we add the numerators). Visual representations also support the making the next whole method, eg: $\begin{aligned} & 1 \frac{9}{10}+\frac{4}{5}=1 \frac{9}{10}+\frac{8}{10}= \\ & 1 \frac{9}{10}+\frac{1}{10}+\frac{7}{10}=2 \frac{7}{10} \end{aligned}$ Subtraction of related fractions Methods mirror the methods used for addition: converting to improper fractions and subtracting; making the previous one.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 6			
	Block 1	Block 2	Block 3
Calculation content	ADDITION AND SUBTRACTION (UNIT 1) Optional revision Number facts and calculation strategies - Facts for one hundred - Friendly numbers - Facts for one and ten - Single digit number facts - Making the next/previous ten - Partitioning the minuend Column method - Add numbers with up to 7 digits (with exchanging) - Subtract numbers from numbers with up to 7 digits (with exchanging)	MONEY AND DECIMALS (UNIT 1) n/a ADDITION AND SUBTRACTION (UNIT 2) - Adding numbers that form a sequence - Adding and subtracting decimals and associated problems (tenths, hundredths and thousandths) FRACTIONS (UNIT 2) - Addition of fractions with unrelated denominators - Subtraction of fractions with unrelated denominators	CALCULATION UNIT n/a MONEY (UNIT 2) n/a

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Optional revision Number facts and calculation strategies - Facts for one hundred - Friendly numbers - Facts for one and ten - Single digit number facts - Making the next/previous ten - Partitioning the minuend There are no new methods. It is helpful for teachers to use the optional revision lessons so they become familiar with children's proficiency in the various methods. Add numbers with up to 7 digits (with exchanging) Children consolidate their understanding of the column method, interpreting calculations presented in varied ways, eg: $\begin{aligned} & 549,893+5,662= \\ & =38,265+153,827 \\ & -\quad 357,247=999,888 \end{aligned}$ $\overline{467,889}+77,862+5,997,459=$ \qquad	Adding numbers that form a sequence Teaching explores what happens when a series of numbers to be added form a sequence, eg: $30+40+50=40 \times 3$ Adding and subtracting decimals (tenths, hundredths and thousandths) Children learnt about complements for one thousand in Year 5. (Addition and subtraction Unit 1.) They are now encouraged to use scaling to convert facts like $\begin{aligned} & 0.001+0.999=1 \text { to } \\ & 1+999=1,000 . \end{aligned}$ Scaling is also encouraged for examples where the number of decimal places is not the same, eg: $\begin{aligned} & 1.005+0.5 \text { becomes } \\ & 1,500+500=1,505 \end{aligned}$ $1.005+0.05$ becomes $1,005+50=1,055 ;$ $1.005+0.005$ becomes $1,005+5=1,010$.	

CALCULATION POLICY FOR ADDITION AND SUBTRACTION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Subtract numbers from numbers with up to 7 digits (with exchanging) Children consolidate their understanding of the column method, interpreting calculations presented in varied ways. They distinguish whether addition or subtraction is required, eg: 943,642-288,988 = \qquad (subtraction); $\begin{aligned} & \quad+289,999=3,154.863 \\ & \text { (subtraction); } \\ & -652,347=989,899 \text { (addition); } \\ & \overline{\text { (subtraction). }} \text {. } 284,000-49,568 \end{aligned}$	Addition of fractions with unrelated denominators (eg $1 / 2+3 / 7$) In Year 5 children subtracted fractions with related denominators, so only one fraction needed to be changed for the denominators to be the same. In Year 6 children need to find a common denominator. They then use learning from Year 4 (when the denominators are the same, we add the numerators). Visual representations also support the making the next whole method Subtraction of fractions with unrelated denominators Children use methods from earlier year groups: - using improper fractions; - making the previous one. They also use their ability to partition the minuend.	

