Year 4			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNTT 1) - $8 \times$ table (r) - $6 \times$ table - $9 \times$ table - $7 \times$ table - Dividing by 6 - Dividing by 9 - Dividing by 7 FRACTIONS (UNIT 1) - Finding unit fractions of quantities - Finding non-unit fractions of quantities MULTIPLICATION AND DIVISION (UNIT 2) - $6 \times$ table (r) - Multiplying multiples of ten by 1 digit numbers - Column method for multiplying 2digit numbers by a 1-digit number (expanded and compact revision) - Multiplying 3 digit numbers (expanded method) - Division with remainders	MONEY AND DECIMALS (UNIT 1) - Multiplying decimals by ten - Dividing 2-digit numbers by ten - Dividing 1-digit and 2-digit numbers by ten - Multiplying and dividing 1 and 2 digit numbers by 100 MULTIPLICATION AND DIVISION (UNIT 3) - Column method for multiplying 3digit numbers by a 1 -digit number (expanded and compact) - Scaling division facts - Dividing 3-digit numbers (partitioning) - Dividing 3-digit numbers (short division - exchanging hundreds and tens) FRACTIONS (UNIT 2) n/a	CALCULATION UNIT - Multiplying 3 numbers - Scaling multiplication and division facts by 10 and 100 - Multiplying a 3-digit number by a 1 digit number (compact column method and partitioning) - Dividing 3-digit numbers (short division and partitioning) MONEY AND DECIMALS (UNIT 2) n/a

| Year 4 | | | Block 1 |
| :--- | :--- | :--- | :--- |\quad| Block 2 |
| :--- |

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	$6 \times$ table Learning about the $6 \times$ table makes links to the $3 \times$ table which children learnt in Year 3. Children encountered open arrays in Year 3 and are refamiliarised with the concept again. (In an open array, the squares or individual objects are not indicated within the interior of the array rectangle. An open array does not have to be drawn to scale.) They explore the pattern formed in the products of the $6 \times$ table. $\underline{9 \times \text { table }}$ Learning about the $9 \times$ table makes links to the $3 \times$ table which children learnt in Year 3 and revisited when they began to learn the $6 \times$ table. Understanding of the distributive property of multiplication is reinforced through partitioned arrays. Children continue to find multiplication statements to interpret open arrays. They also explore the pattern formed in the products of the $9 \times$ table.	Column method for multiplying 3-digit numbers by a 1 -digit number (expanded and compact) In Unit 2 children used the compact column method to multiply 2-digit numbers and the expanded method to multiply 3 -digit numbers. Now they learn to apply the compact method to the multiplication of 3 -digit numbers. Accurate use of language is key to ensuring conceptual understanding. For example: 6 ones $\times 3=18$ ones. 18 ones $=1$ ten and 8 ones. 2 tens $\times 3=6$ tens plus 1 ten $=7$ tens. 3 hundreds $\times 3=9$ hundreds.	Scaling multiplication and division facts by 10 and 100 Children have had considerable experience with scaling number facts by ten and some previous experience of scaling facts by one hundred. For example, known addition and subtraction facts were scaled by one hundred in + and - unit 1 . Some work on scaling by one hundred for multiplicative facts occurred in earlier \times and \div units. By the end of Year 4 children should have increasingly good recall of multiplication facts and the associated division facts. They now combine these facts with unitising in hundreds. They learn that in scenarios like 400×3 they can use an anchor fact, $4 \times 3=12$. Because one factor, 4 , will be multiplied by 100, then the resulting product must also be multiplied by 100. $4 \times 3=12 \text { so } 400 \times 3=1,200$ Accurate use of language is key to ensuring understanding. For example: 4 hundreds $\times 3=12$ hundreds $=12 \underline{00}=$ 1,200

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	$7 \times$ table Learning about the $7 \times$ table makes links to the 5 and $2 \times$ tables which children learnt in Year 2. Understanding is reinforced through partitioned arrays, eg: $\begin{aligned} & 4 \times 5=20 \\ & 4 \times 2=8 \\ & 4 \times 7=28 \end{aligned}$ Children find multiplication statements to interpret open arrays. After children have been introduced to the 6,9 and 7 multiplication tables teachers need to provide plenty of opportunities for these - and all the others - to be practised. When children commit multiplication table facts to memory, they do so using a verbal sound pattern to associate the 3 relevant numbers, for example, "seven threes make twenty-one". It is important to provide opportunities for pupils to verbalise each multiplication fact as part of the process of developing fluency. (DfE Ready to Progress guidance.) Read them as 'One three is three; two threes make six; three threes make nine' etc.	Scaling division facts Base ten representations support understanding that when there is the same multiplicative change to the dividend and the divisor the resulting quotient stays the same. Scaling can help us to arrive at a simpler calculation to support answering a more complex calculation. For example: $42 \div 7$ is easier than $84 \div 14$ which is easier than $168 \div 28$.	Multiplying a 3-digit number by a 1 - digit number (compact column method and partitioning) Children consolidate understanding of the compact column method and revisit partitioning to secure multiplication of numbers with up to 3 digits. They do this within a problem solving approach and identify relationships between calculations. Dividing 3-digit numbers (short division and partitioning) Children consolidate understanding of the short division and revisit partitioning to secure division of numbers with up to 3 digits. They do this within a problem solving approach and identify relationships between calculations.

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Dividing by 6 Children continue to use language about division that was introduced in Year 3, (dividend, divisor and quotient). In Year 2 and Year 3 children encountered two division structures, sharing and grouping. This continues in Year 4 and they interpret diagrams using both structures. Children should be very familiar with the relationship triangle and these are used to promote links between multiplication facts and division facts. Teaching builds on work from Year 3 using the multiplication grid to find division facts.	Dividing by partitioning and using short division Children have used both methods previously. They are now applied to situations where the dividend is a 3digit number. Initial examples partition the dividend in a standard way. For example, 927 is partitioned into 900 and 27 when being divided by 9. Later examples partition the dividend in a non-standard way, prioritising partitioning into multiples of the divisor. For example, 891 is partitioned into 810 and 81 when being divided by 9 . Teaching makes connections between the methods.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	Block 3		
	Strategies/ methods	Dividing by 9 Learning to divide by 9 continues to develop understanding of the sharing and grouping structures. Children use the multiplication grid to derive division facts and interpret bar models. Dividing by 7	The final lesson of the unit focuses on dividing by 7. The concepts (sharing and grouping) and representations (arrays, relationship triangles and multiplication grids) should be familiar to the children. They solve problems involving the inverse.		
:---					

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Finding unit fractions of quantities Children have experience of finding halves, thirds, quarters, fifths, eighths and tenths linked to multiplication tables encountered in Year 2 and Year 3. Teaching stresses the connection between a unit fraction of a quantity and dividing that quantity by the denominator. That experience is now extended to finding sixths, sevenths and ninths (linked to multiplication tables they should know/be learning). Visual representations and careful use of language support understanding. Learning progresses from describing situations where the value of a part is visible to situations the value of a part cannot be seen. Finding non-unit fractions of quantities Learning now moves on to finding nonunit fractions of quantities. Teaching models using division to find the unit fraction and then multiplication to find multiples of the unit fraction.		

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	
	Strategies/ methods	Multiplying multiples of ten by 1-digit numbers (r) Understanding about using scaling to derive new multiplication facts from known facts is consolidated. For example: $5 \times 6=30$ $50 \times 6=5$ tens $\times 6=30$ tens = 300 Base ten is used to support conceptual understanding. As you say '30 tens' it is useful to write 300 (underlining the zero as you say 'tens'). Then read 30 tens/300 as three hundred/300. Column method for multiplying 2-digit	
numbers by a 1-digit number (r) Multiplying a 2-digit number is revised (from Y3) prior to moving on to using the expanded method to multiply a 3- digit number. Accurate use of language is key to ensuring conceptual understanding. For example: 6 ones $\times 3=18$ ones 18 ones = 1 ten and 8 ones Connections are made between the expanded column method and the compact column method.			

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	Block 3
Strategies/ methods	Multiplying 3-digit numbers (expanded method) Multiplying a 3-digit number by a 1- digit number is learnt using a method children already know - the expanded column method. The only thing different is there are now three digits. Accurate use of language remains key. For example: 6 ones $\times 4=24$ ones. 24 ones = 2 tens and 4 ones. 4 tens $\times 4=16$ tens. 16 tens $=1$ hundred and 6 tens.		

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Division with remainders Until this point, all work on division has resulted in quotients that are whole numbers, i.e. there have been no remainders. Teaching now helps children recognise that a remainder arises when there is something 'left over' in a division calculation. Children need to recognise and understand why remainders only occur when the dividend is not a multiple of the divisor. This can be achieved by discussing the patterns seen when the dividend is incrementally increased by 1 while the divisor is kept the same. Teaching stresses the following points. - If the dividend is a multiple of the divisor there is no remainder. - If the dividend is not a multiple of the divisor, there is a remainder. - The remainder is always less than the divisor.		

distributive property of multiplication reinforced through partitioned array

\times	1	2	3	4	5	6	7	8	9	10	11	12
1												
2			6	8	-	4	8					
3												
4			8	-6	-	4	8					
5												
6												
7												
8												
9												
10												
11												
12												

commutative property

```
Year 4 - Block 1 4\times6=24
```


$6 \times$ table

$$
1 \times 3=\quad 3 \quad 1 \times 6=\quad 6
$$

$$
2 \times 3=6
$$

$$
2 \times 6=12
$$

$$
3 \times 3=\quad 9 \quad 3 \times 6=18
$$

$$
4 \times 3=12
$$

$$
4 \times 6=24
$$

making connections: $3 \times$ table and the $6 \times$ table


```
Year 4- Block 1 4*9=36
```


$9 \times$ table

making connections: $3 \times$ table and the $9 \times$ table

ALL:
PARTS:

open arrays
distributive property of multiplication
reinforced through partitioned array

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

$7 \times$ table

making connections: 5 and $2 \times$ tables and the $7 \times$ table

open array

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4-Block 1		$18 \div 6=3$									
Dividing by 6											
\bigcirc	quotitive (grouping) division structure	relationship triangle	x	1		2	3	4	5	6	multiplication grid being used to find division fact
			1	1		2	3	4	5	6	
$\bigcirc \bigcirc$			2	2		4	6	8	10	12	
$\bigcirc \bigcirc$			3	3		6	9	12	15	18	
$\bigcirc \bigcirc \bigcirc$			4	4		8	12	16	20	24	
$\bigcirc \bigcirc$			5	5		10	15	20	25	30	
$\bigcirc \bigcirc$			6	6		12	18	24	30	36	
$\bigcirc \bigcirc \bigcirc$			7	7		14	21	28	35	42	
partitive (sharing) division structure			8	8		16	24	32	40	48	
			9	9		18	27	36	45	54	
			10	10		20	30	40	50	60	

```
36\div9=3
```

Dividing by 9

partitive (sharing) division structure

quotitive (grouping) division structure

\mathbf{x}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

bar model

```
Year 4-Block 1
28\div7=4
```

Dividing by 7

partitive (sharing) division structure

quotitive (grouping) division structure

relationship triangle

division as inverse of multiplication

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

value of a part is visible
The whole is \square
The whole is divided
 into \square equal parts.
Each part is \square of the whole. $\frac{1}{6}$ of 18 is \square.

Kate has a jar of 48 sweets.
1
$\frac{1}{4}$ of them are in red wrappers,
1
$\frac{1}{6}$ of them are in blue
wrappers and the rest are in green.
How many sweets are in green wrappers?

problem solving

Finding non-unit fractions of quantities

Liam has $£ 20$.
He spends $\frac{3}{5}$ at a funfair.
How much money does he spend?
value of a part is visible
value of a part is not visible
The whole is \square
The whole is divided into \square equal parts.
Each part is \square of the whole.
$\frac{3}{5}$ is shaded. $\frac{3}{5}$ of 20 is \square.
problem solving

Year 4 - Block 1
 $50 \times 6=300$

Multiplying multiples of ten by 1 -digit numbers (r)

base 10 supports understanding of scaling:
5 tens $\times 6=30$ tens

```
Year 4 - Block 1 56\times3=168
```

Column method for multiplying 2-digit numbers by a 1-digit number (r)

\times	5	6
\times		3
	1	8
1	5	0
1	6	8

expanded column method

Step 1: Multiply the ones
6 ones $\times 3=18$ ones
18 ones $=1$ ten and 8 ones
Step 2: Multiply the tens
5 tens $\times 3=15$ tens and 1 ten $=16$ tens

compact column method

95

```
Year 4 - Block 1 146\times4=300
```

Multiplying 3-digit numbers by a 1-digit number (expanded method)

expanded column method
Multiply the ones

Multiply the tens

Multiply the hundreds

Combine the parts

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 1
146\times4=300
```


Division with remainders

Total number of eggs (dividend)	Number of eggs in each carton (divisor)	Number of cartons (quotient)	Number of eggs left over (remainder)	Division sentence		
12	6	2	0	$12 \div 6=2$		
13	6	2	1	$13 \div 6=2 \mathrm{r} 1$		
14	6	2	2	$14 \div 6=2 \mathrm{r} 2$		
15	6	2	3	$15 \div 6=2 \mathrm{r} 3$		
16	6	2	4	$16 \div 6=2 \mathrm{r} 4$		
17	6	2	5	$17 \div 6=2 \mathrm{r} 5$		
18	6	3	0	$18 \div 6=3 \mathrm{r} 0$		
19	6	3	1	$19 \div 6=3 \mathrm{r} 1$	\quad	dividend (12) is a multiple of the divisor (6) -
:---:						
there is no remainder						
dividends (13-17) are not multiples						
of the divisor (6) -						
there are remainders	\quad	dividend (18) is a multiple of the divisor (6) -				
:---:						
there is no remainder						

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```

Multiplying and dividing by ten

Th	H	T	0	t	h
			0	1	
			1		
		1	0		
		0	0		

thousands	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
hundreds	100	200	300	400	500	600	700	800	900
tens	10	20	30	40	50	60	70	80	90
ones	1	2	3	4	5	6	7	8	9
tenths	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
hundredths	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

```
Year 4-Block 2
```

Multiplying and dividing 1- and 2-digit numbers by 100

thousands	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
hundreds	100	200	300	400	500	600	700	800	900
tens	10	20	30	40	50	60	70	80	90
ones	1	2	3	4	5	6	7	8	9
tenths	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
hundredths	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

Column method for multiplying 3-digit numbers by a 1 -digit number (expanded and compact)

Multiply the ones
6 ones $\times 3=18$ ones
be exchanged for 1 ten and 8 ones
Multiply the tens
$3=6$ tens and 1 ten $=7$ tens

Multiply the hundreds
3 hundreds $\times 3=9$ hundreds

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```

Scaling division facts
(0)
same multiplicative change to the dividend and the divisor (scaled up
by 10) meaning the resulting
quotient stays the same

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```


Dividing by partitioning and using short division

Year 4 - Block 3

Multiplying 3 numbers

\times	1	12	3	4	4	x	1	2	2	3	4	5	6		\times	1	2	3		4
1						1									1					
2	3	$\times 2$		2	2	2									2					
3						3									3					
4						4									4					
5		22	3		2										5					
6															6					
3	3	+	[4				2	-			$\underline{2}$		$4 \times$	$\times 3$		
		6	菏						$\sqrt{2}$			$1-[$					$\sqrt{5}$			$=\frac{1}{24}$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 3
```

Scaling multiplication and division facts by 10 and 100

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4 - Block 3
```

Multiplying a 3-digit number by a 1-digit number (compact column method and partitioning)

		H	T	0	
		2	3	9	
	\times			5	
	1	1	9	5	
		1	4		

200	30	9
200	30	9
200	30	9
200	30	9
200	30	9

```
Year 4-Block 3
```

Dividing 3-digit numbers (short division and partitioning)

