| CALCULATION POLICY FOR ADDITION AND SUBTRACTION | |
| :--- | :--- | :--- |
| Year 2- Block 1 | $8+2=10 \bullet 18+2=20$ |
| Number bonds for 20 | |

BLOCK 1

Number bonds for 20
Partitioning first addend into tens and ones then combining ones, eg: $18+2=10+8+2$.
NB Number bonds for 20 are revisited early on in the Block 2 unit on money.

Add a two-digit number and ones - no exchanging Three methods:

- counting on;
- partitioning first addend into tens and ones, then combining ones;
- column method.

Add multiples of ten
Use known facts, eg:
$3+2=5$ so 3 tens +2 tens $=5$ tens.

| CALCULATION POLICY FOR ADDITION AND SUBTRACTION | YEAR 2 |
| :--- | :--- | :--- |
| Year 2- Block 1 | |
| Friendly number pairs | |

Friendly number pairs
Friendly numbers fit together to make a number that is easy to work with. Reordering is often used to simplify calculations. Eg:
$14+30+6$ becomes $14+6+30$ which becomes $20+30$.

Subtract ones from a two-digit number - no exchanging
Three methods:

- counting back;
- partitioning minuend;
- column method.

Subtract multiples of ten
Use known facts, eg:
$5-2=3$ so 5 tens -2 tens $=3$ tens.

CALCULATION POLICY FOR ADDITION AND SUBTRACTION		YEAR 2
Year 2-8lock 1	10-2 $=8 \cdot 30-2=28$	
Subtract ones from a multiple of ten		
		$10-$ $2=$ \square
		$\begin{equation*} 30-2= \tag{28} \end{equation*}$ tens frames representations support understanding of related facts
$\begin{aligned} & \text { EFFECTIVE } \\ & \text { MATHS } \end{aligned}$	27	$\begin{aligned} & \text { EFFECTIVA } \\ & \text { MATHS } \end{aligned}$

Subtract ones from a multiple of ten
Use known facts, eg:
10-2 = 8 so $30-2=28$.

Add single digit numbers bridging ten
Making the next ten, eg:
$8+6=8+2+4$.
Subtract single digit numbers from 11-18 bridging ten
Making the previous ten, eg:
15-8=15-5-3.

BLOCK 2

Add a two-digit number and ones
Three methods:

- making the next ten, eg:
$28+6=28+2+4 ;$
- expanded column method (next page);
- compact column method (next page).

Add 3 one-digit numbers
Children use their developing ability to make the next ten to add 3 one-digit numbers. The core representation is the tens frame, eg:
$9+7+5=$
$16+5=$
$16+4+1=21$

Subtract ones from a two-digit number
Two methods:

- making the previous ten;
- compact column method.

Adding 2 two-digit numbers

Three methods:

- partitioning addends into tens and ones and combining;
- expanded column method (next page);
- compact column method (next page).

Language for the compact column method
The use of accurate language is essential to ensure conceptual understanding of the column method.
Avoid terms like 'units' and 'carry'.
Link to children's understanding of how base 10 works (the trading games played in place value unit 1).
Say:
Add the ones.
4 ones and 8 ones makes 12 ones.
12 ones is the same as 1 ten and 2 ones.

Add the tens.

2 tens and 1 ten and 1 ten makes 4 tens.

Subtracting a two-digit number from a multiple of ten
Partitioning the subtrahend, eg:
$30-19=30-10-9$.

Subtracting a two-digit number from a two-digit number
Two methods:

- partitioning the subtrahend;
- compact column method (next page).

Language for the compact column method

As for addition, accurate use of language is essential to ensure conceptual understanding of the column method.
Do not use the term 'borrow'.
There are not enough ones in the situation 3 ones take away 9 ones. So we need some more ones. Let's exchange/swap 1 ten for 10 ones. Now we have 13 ones. 13 ones take away 9 ones equals 4 ones.

