

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

This document provides an overview of the content and methods encountered in each year group from Year 1 to Year 6.
For each year group in Years 1-6 the document provides:
i. a content summary section;
ii. details about the approaches used for teaching the above;
iii. the representations used.

Each section includes content from:

- calculation unit 6 (Y1); multiplication and division units 1 and $2(\mathrm{Y} 2)$; multiplication and division units 1 to 3 (KS2);
- the Block 3 calculation unit;
- money and decimals units;
- fractions units (Years 2-6).

The document is provided in several versions:

- whole school version (this document);
- year group specific versions;
- a Key Stage 1 only version (for infant schools).

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 1

Year 1			
	Block 1	Block 2	Block 3
Calculation content			CALCULATION (UNIT 6) - Identifying groups - Equal groups - Repeated addition - Making equal rows (arrays) - Doubles - Multiplication stories - Equal groups (division) - Equal sharing

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods			Children begin their work on multiplication with an understanding that a unit does not have to be one. In place value units and fluency sessions they have counted in twos, fives and tens. This provides some support with understanding the concept of multiplication. Identifying groups Initial learning about groups focuses on deepening understanding about what the term 'group' means. They identify whether a collection of objects can/cannot form a group. Equal groups Children learn to identify objects grouped into equal or unequal groups. Where the groups are not equal, they are encouraged to think about how to rearrange the objects to make equal groups. At this stage the focus is on the structures: number of groups and number in each group. The focus is not on the total amount.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

| Year 1 | Block 1 | | Block 2 |
| :--- | :--- | :--- | :--- | | Block 3 |
| :--- |
| Strategies/
 methods |

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods			Making equal rows (arrays) Children's learning about groups becomes more structured as they make equal rows. This means that they are building arrays. An array is a powerful structure to provide conceptual understanding for multiplication and, later, division. They describe the number of items in each row, the number of columns, and then the total. After this, children use counters to build arrays. They describe the arrays in two ways: - the number of rows followed by the number of counters in each row; - the number of columns followed by the number of counters in each column. Doubles Doubling has been encountered previously. Teaching now emphasises that 'double' is two groups of a number or an amount. Children's knowledge of doubles is extended from doubles of 1-5 to doubles of 1 10.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1			
	Block 1	Block 2	Block 3
Strategies/ methods			Multiplication stories Year 1 work on multiplication concludes by consolidating children's understanding about ways to describe equal groups. They do this by stating the number of groups, then the number in each group. They also use repeated addition. For example: There are 2 trees with apples on. There are 5 apples on each tree. $5+5=10$ Equal groups (division) Children's understanding about equal groups is now applied to learning about division. They take an amount and divide it into equal groups. Division as grouping is also known as quotitive division. The language used is important. We are not saying 12 'divided by' 3 . We are saying ' 12 put into groups of 3 makes 4 groups'. In division as grouping the quotient (the answer) is the number of equal groups.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 1

Year 1	Block 1		Block 2
Strategies/ methods		Block 3	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block 3

Identifying groups

Groups or not groups?

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block 3

Equal groups

Find the equal groups.

There are __ groups. Each group has __ strawberries.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block 3

Repeated addition

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block $3 \quad 4$ lots of 3 makes 12 • 3 lots of 4 makes 12

Making equal rows (arrays)

There are rows.
There are circles in each row.

$$
+++\quad+=12
$$

lots of 3 makes
There are columns.
There are circles in each column.
$++\quad=12$
lots of 4 makes \qquad .
Year 1 - Block $3 \quad$ Double 8 is 16

Doubles

Multiplication stories

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block 3

Equal groups (division)

Take 12 counters.

Put 2 counters into each rectangle. How many rectangles are used? 6 Put 3 counters into each rectangle. How many rectangles are used? 4 Put 4 counters into each rectangle. How many rectangles are used? Put 6 counters into each rectangle. How many rectangles are used?

12 put into groups of 3 makes 4 groups.

There are 20 crayons.
The crayons are put into groups of 4.
How many groups of 4 crayons?

20 is made up of groups of .
What numbers are missing from the bar model?

20 put into groups of 4 makes 5 groups.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 1 - Block 3

Equal sharing

There are 12 counters.
The counters are shared equally between the children.
How many counters does each child receive?

There are 12 counters.
The counters are put into groups of 3.
How many equal groups?

division as grouping

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNIT 1) - Groups and equal groups - $5 \times$ table - $10 \times$ table - $2 \times$ table - Division: sharing by 2 - Division: making groups of 2 - Odd and even numbers - Dividing by 5 - Dividing by 10 FRACTIONS (UNIT 1) - Finding half	MONEY AND DECIMALS (UNIT 1) n / a MULTIPLICATION AND DIVISION (UNIT 2) - $10 \times$ table (r) - Dividing by 10 (r) - $5 \times$ table (r) - Dividing by 5 (r) - $2 \times$ table (r) - Dividing by 2 (r) FRACTIONS (UNIT 2) - Finding half (r) - Finding one quarter - Finding quarters - Finding thirds	CALCULATION UNIT - Doubling and halving MONEY AND DECIMALS (UNIT 2) - Multiplying amounts of money - Dividing amounts of money

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Groups and equal groups In Y1 children learnt about equal and unequal groups. They began to understand the equivalence between a repeated addition expression and a multiplication expression exists due to equal groups, eg: $10+10+10=3 \times 10$ Teaching shows how the numbers in ' 3 $\times 10$ ' relate to the numbers in ' $10+10$ $+10 \prime$ $5 \times$ table Children's knowledge about multiplication is developed by learning about the $5 \times$ table. The array is introduced as a key tool for conceptual understanding. Pictures are used as prompts for writing multiplication equations, eg: $4 \times 5=20$ Teaching encourages children to explain how each term links to the context.	$10 \times$ table (r) and dividing by $10(r)$ Block 2 begins with revision of the 10 \times table and the related division facts. There are no new representations. Children continue to work with arrays, including arrays that support early understanding of the distributive property of multiplication. There is an emphasis on strengthening connections between multiplication and division and this is echoed in fluency sessions.	Doubling and halving Understanding of doubling and halving is extended to finding double/half of two-digit numbers beyond 20. The strategy modelled is to partition the two-digit number into tens and ones, find half of each part, and then combine. Children need to know half of multiples of 10 to 90 and half of the even numbers $2,4,6$ and 8. Multiplying amounts of money Children's knowledge of multiplication facts is applied to the context of money. Visual representations emphasise the repeated addition structure of multiplication. Children find missing amounts on a money multiplication grid and develop the ability to represent problems with bar models.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	$10 \times$ table Learning about the $10 \times$ table continues to make use of arrays and the interpretation of pictorial representations. Links between the 5 \times table and $10 \times$ table are also explored. $\underline{2 \times \text { table }}$ Learning about the $2 \times$ table also continues to make use of arrays. An early introduction to the distributive property of multiplication (not referred to as such) deepens understanding about multiplication. For example: $\begin{aligned} & 3 \times 2=6 \\ & 2 \times 2=4 \\ & 5 \times 2=10 \end{aligned}$	$5 \times$ table (r) and dividing by $5(r)$ As with the $10 \times$ table, there are no new representations. Again, there is an emphasis on strengthening connections between multiplication and division and this is echoed in fluency sessions. Throughout Block 2 there is a focus on applying knowledge of multiplication and division to solve problems.	Dividing amounts of money The money multiplication grid is used for division. Teaching makes explicit links with multiplication. $\begin{aligned} & 3 \times-=6 p \\ & 6 p \div 3=2 p \end{aligned}$ Children continue to develop the ability to represent problems with bar models.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Division: sharing by 2 Learning about division begins by understanding that the term divide can be used when something is separated into equal parts. Learning to divide by 2 begins with the partitive (sharing) division structure. Children are introduced to the division symbol: \div. Connections are made between division and multiplication, supported by the relationship triangle, eg: $10 \div 2=5$	2 \times table (r) Learning about the $2 \times$ table does introduce a new representation: the multiplication grid. The core purpose of the lesson is to familiarise children with how the grid works as it is likely something they will encounter. Teaching introduces the commutative property and shows how we obtain the same product regardless of the order of the factors.	The multiplication grid may look a bit like a 100 square, but it works in a very different way. The multiplication grid is actually arrays. The first grid shows 7 rows of 2. The second shows 2 columns of 7.

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Odd and even numbers Learning explores dividing by 2 using the context of odd and even numbers and children learn that even numbers can be divided exactly by 2 . Dividing by 5 Learning to divide by 5 involves both sharing and grouping structures. Teaching seeks to help children to see where the quotient is in each structure: for sharing - the number in each group; for grouping - the number of groups. The relationship triangle is used to help make links between multiplication and division. Dividing by 10 Block 1 concludes with learning to divide by 10 , using both sharing and grouping structures.	Dividing by 2 Solving problems involving dividing by 2 introduces the concept of inverse. Children will need to learn the term, but understanding of it is best achieved by talking about working forwards or working backwards. In the case of $7 \times 2=\ldots$ we are working forwards. In the case of $14=\ldots \times 2$ we are working backwards or using the inverse. In the examples shown in the representations section, we can solve row 1 and row 2 by working forwards. To solve row 3 we need to work backwards.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			
	Block 1	Block 2	Block 3
Strategies/ methods	Finding half Learning to find half of a number, a group of objects or a shape begins by revisiting the connections between the $2 \times$ table and its related division facts. The focus is on finding half of numbers to 20 . Children engage in a range of contexts that involve finding half of even numbers to 20 .	Finding half (r) Revision of finding half of numbers to 20 continues to make connections between the $2 \times$ table and its related division facts. Activities include shading shapes to show one-half and also drawing lines on grids to divide shapes into halves. Finding one quarter Children learn that one quarter of a set of objects occurs when the whole is split into 4 equal parts. Note that the $4 \times$ table has not been taught in Year 2 - it is taught in Year 3 - so children cannot use their knowledge of division facts to obtain one quarter. A range of approaches are used, including using concrete resources, encouraging the use of drawing and linking to knowledge of finding half.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2			Block 1		Block 2	Block 3
Strategies/ methods	Finding three-quarters Finding three-quarters of a set is initially done through using concrete resources. Connections are also made to finding one quarter: if one quarter is 5, then two-quarters is 10 and three-quarters is 15.	Finding thirds Children learn that one third of a set of objects occurs when the whole is split into 3 equal parts. Note that the $3 \times$ table has not been taught in Year 2 -it is taught in Year 3-so children cannot use their knowledge of division facts to obtain one third. Nor can they make links to other maths facts they know. They have had experience of counting in threes and the use of concrete resources, visual representations and drawing are the prime strategies for finding thirds. As for learning to find three-quarters, children apply their knowledge of finding one-third to finding two-thirds.				

Groups and equal groups

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2 - Block $1 \quad 4 \times 5=20$

$5 \times$ table

array

$5+5+5+5=20$
repeated addition
4 groups of $5=20$
multiplication equation

Year 2 - Block 1

```
*5=20\bullet \times 10=40
```

$10 \times$ table

$$
4 \times 5=20 \quad 4 \times 10=40
$$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Year 2 - Block $1 \quad \times 2=6 \circ \times 2=4 \circ \times 2=10$

$2 \times$ table

3 groups of \square
 and

\square groups of \square

makes

which equals


```
Year 2- Block 1
```

$10 \div 5=2$

Division: sharing by 2
At the start of the lesson we learnt that the word divide can be used when something is separated into equal parts.

In maths, divide means to find how many times a number contains another.

10 sweets were shared equally between 2 children. Each child received 5 sweets. 10 divided by 2 is 5 . $10 \div 2=5$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2 - Block 1 14\div2=7
```

Division: making groups of 2

quotitive (grouping) division structure

relationship triangle

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

The numbers on the left are called odd numbers. The numbers on the right are called even numbers.

Even numbers can be divided exactly by 2.

```
Year 2- Block 1
15\div5=3
```

Dividing by 5

partitive (sharing) division structure

quotitive (grouping) division structure

relationship triangle

Dividing by 10

70 squares are shared between 10 people. Each person receives 7 squares.

$$
70 \div 10=7
$$

partitive (sharing) division structure

70 squares are put in groups of 10. There are 7 groups.

$$
70 \div 10=7
$$

quotitive (grouping) division structure

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2- Block }
1/2 of 16=8
```

Finding half

$$
8 \times 2=16 \quad 16 \div 2=8
$$

1

$$
\frac{1}{2} \text { of } 16=8
$$

16 squares altogether
$\frac{1}{2}$ of $16=8$

Mia bought a bag of cherries. She ate half the number of cherries in the bag. Mia had 8 cherries left. How many cherries did Mia buy?

```
Year 2 - Block 2 6 < 10=60\bullet60\div10=6
```

$10 \times$ table (r) and dividing by $10(r)$

$$
6 \times 10=60
$$

array showing 6 groups of 10 making 60

$$
60 \div 10=6
$$ array of 60 squares divided into 6 groups of 10 emphasise connections between multiplication and division

```
Year 2-Block 2
```

$5 \times$ table (r) and dividing by $5(r)$

applying knowledge of multiplication and division to solve problems

commutative property of multiplication on the multiplication grid

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 2 - Block 2
Dividing by 2 (r)

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2-Block 2
\(1 / 2\) of \(16=8\)
```

Finding half (r)

$$
8 \times 2=16 \quad 16 \div 2=8
$$

16 squares altogether. $1 / 2$ of $16=$

There are 8 squares on each side of the line.

8 is half of 16 .

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 2

```
Year 2-Block 2 1/4 of 20=5
```


Finding one quarter

$$
\begin{gathered}
\text { Finding } \frac{1}{4} \text { is the same as } \\
\text { dividing by } 2 \\
\text { and then dividing by } 2 \text { again. }
\end{gathered}
$$

5 is $1 / 4$ of 20.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION
Year 2 - Block $2 \quad 3 / 4$ of $20=15$

Finding three-quarters

$$
\begin{aligned}
& \mathbf{1 / 4} \text { of } \mathbf{2 0}=\square \\
& \mathbf{2} / \mathbf{4} \text { of } \mathbf{2 0}=\square \\
& \mathbf{3} / \mathbf{4} \text { of } \mathbf{2 0}=\square
\end{aligned}
$$

Year 2 - Block $2 \quad 2 / 3$ of $27=18$

Finding thirds
\square counters were shared into \square equal groups.


```
Year 2-Block 3
1/2 of 32=16
```


Doubling and halving

numeric representation showing half of 32

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 2

Year 2 - Block $3 \quad 5 p \times 4=20 p$

Multiplying amounts of money

\times	1	2	3	4	5	6
2	$2 p$	$4 p$	$6 p$	$8 p$	$10 p$	$12 p$
20	$5 p$	$10 p$	$15 p$	$20 p$	$25 p$	$30 p$
	$10 p$	$20 p$	$30 p$	$40 p$	$50 p$	$60 p$

money multiplication grid

Chloe has 5p.
Grace has four times as much money as Chloe.
How much money does Grace have?

Grace has 20p.

representing problems with the bar model

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 2-Block 3
```

Dividing amounts of money

\times	3	9	6	5	7	2	Oliver has 60p. He spends the same amount every day for 10 days. How much does he spend each day?	
	6p	18p	12p	10p	14p	4p	\qquad	F-5
	30p	90p	60p	50p	70p	20p	$60 p \div 10=6 p$	
	15p	45p	30p	25p	35p	10p	Oliver spends 6p every day for 10 days.	

money multiplication grid used for division
representing problems with the bar model

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 3			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNTT 1) - $5 \times$ table (r) - $4 \times$ table - $8 \times$ table - $3 \times$ table - Dividing by 4 - Dividing by 8 - Dividing by 3 FRACTIONS (UNIT 1) - Finding unit fractions of quantities MULTIPLICATION AND DIVISION (UNTT 2) - Multiplying by teen numbers (partitioning) - Multiplying multiples of ten by 1 digit numbers - Multiplying 2-digit numbers by 4 (expanded column method) - Multiplying 2-digit numbers by 8 (expanded column method)	MONEY AND DECIMALS (UNIT 1) n/a MULTIPLICATION AND DIVISION (UNIT 3) - $4 \times$ table (r) - $8 \times$ table (r) - $3 \times$ table (r) - Multiplying teen numbers (partitioning) and multiplying multiples of ten (r) - Multiplying 2 -digit numbers by 3 (expanded column method) - Division facts linked to the 4 and $8 \times$ tables (r) - Division facts linked to the $3 \times$ table (r) - Dividing multiples of ten - Dividing by partitioning (\div by 4 and 8) - Dividing by partitioning (\div by 3) FRACTIONS (UNIT 2) n/a	CALCULATION UNIT - Multiplying 2-digit numbers (compact column method) - Dividing a 2-digit number (short division) MONEY AND DECIMALS (UNIT 2) n/a

Year 3			
	Block 1	Block 2	Block 3
Strategies/ methods	$5 \times$ table (r) Block 1 begins by revisiting the $5 \times$ table and introduces some new vocabulary to children (factor, multiplier, multiplicand and product). Children's understanding is deepened as they encounter arrays on blank multiplication grids. As learning progresses these arrays become partitioned and children are exposed to the distributive property of multiplication: $6 \times 5=2 \times 5+4 \times 5$ $4 \times$ table Learning about the $4 \times$ table also continues to make use of arrays. They revisit learning from Year 2 that whilst the repeated addition describes the arrays, $4+4+4+4+4+4$ is not as efficient as 6×4. They learn that multiplication takes precedence over addition. Children continue to be exposed to the distributive property of multiplication (not referred to as such) to deepen understanding about multiplication.	4, 8 and $3 \times$ tables (revision) x and \div Unit 3 begins with revision of the 4,8 and $3 \times$ tables. No new representations are encountered. Teaching stresses the commutative nature of multiplication and shows how we obtain the same product regardless of the order of the factors. The multiplication grid may look a bit like a 100 square, but it works in a very different way. The multiplication grid is actually arrays. The first grid shows 5 rows of 4 . The second shows 4 columns of 5 . Children continue to be exposed to the distributive property of multiplication (not referred to as such) to deepen understanding about multiplication. For example: $10 \times 3+2 \times 3=12 \times 3$	Multiplying 2-digit numbers (compact column method) Children have multiplied numbers by using partitioning, including representing this partitioning with the expanded column method. Arrays and base ten representations support conceptual understanding as the compact column method is introduced. The use of language is key to ensure conceptual understanding, particularly around the exchanging of ones for tens. Language for 36×3 $\begin{aligned} & 6 \text { ones } \times 3=18 \text { ones }=1 \text { ten and } 8 \text { ones. } \\ & 3 \text { tens } \times 3=9 \text { tens }+ \text { the } 1 \text { ten }=10 \text { tens } \\ & =1 \text { hundred. } \end{aligned}$

Year 3			Block 1

Year 3			
	Block 1	Block 2	Block 3
Strategies/ methods	$3 \times$ table The final multiplication table learnt in Year 3 is the $3 \times$ table. The emphasis in learning here is to use a known fact to derive a new fact, eg: $6 \times 3=18 \text { so }$ $7 \times 3=18$ plus one more lot of $3=21$. After children have been introduced to the 4,8 and 3 multiplication tables teachers provide plenty of opportunities for these to be practised. When children commit multiplication table facts to memory, they do so using a verbal sound pattern to associate the 3 relevant numbers, for example, "seven threes make twentyone". It is important to provide opportunities for pupils to verbalise each multiplication fact as part of the process of developing fluency. (DfE Ready to Progress guidance) Read them as 'One three is three; two threes make six; three threes make nine' etc.	Multiplying 2-digit numbers by 3 \times and \div Unit 2 introduced the expanded column method to multiply 2 -digit numbers by 4 and 8 . (These are multiplication tables children typically have better recall of than the $3 \times$ table.) Multiplying 2 -digit numbers by 3 is introduced in Unit 3. Base 10 supports understanding of the expanded column method. Accurate use of language is key to ensuring conceptual understanding. For example: $\begin{aligned} & 8 \text { ones } \times 3=24 \text { ones }=24 \\ & 6 \text { tens } \times 3=18 \text { tens }=180 \end{aligned}$	Using partitioning for $75 \div 3$ Partition 75 into parts that are divisible by 3 , highlighting that those parts are 60 and 15 not 70 and 5 . Divide each part by 3 . Combine the parts to obtain 25. Using short division for $75 \div 3$ Write the dividend (75) and then draw the frame. Write the divisor on the left of the dividend. Say: 7 tens \div by $3=2$ tens with 1 ten left over. Exchange 1 ten for 10 ones. 15 ones divided by $3=5$ ones.

Year 3			
	Block 1	Block 2	Block 3
Strategies/ methods	4,8 and $3 \times$ tables A problem solving lesson concludes the work on multiplication facts. Children encountered the multiplication grid in Year 2. The problem solving lesson seeks to further develop children's understanding of the multiplication grid. They will need this knowledge for the division lessons where they will learn to use the multiplication grid to derive division facts. The division lessons begin with starter activities revisiting multiplication facts. One of the representations encountered in these activities is the multiplication grid.	Dividing by 4,8 and 3 (r) The second half of the unit focuses on division and begins with revision of division facts linked to the 4, 8 and 3 \times tables. Children are reminded how to use the multiplication grid to obtain division facts and about the sharing/grouping structures for division. Relationship triangles reinforce the connections between multiplication and division. Children solve problems involving division facts linked to the 4,8 and $3 \times$ tables. Dividing multiples of ten Children have experienced using known facts in unit 2 (and earlier in this unit) when they multiplied multiples of ten. They now use scaling for division facts derived from multiplication tables. Use of language is key. 6 ones divided by $3=2$ ones 6 tens divided by $3=2$ tens $60 \div 3=20$	

Year 3			
	Block 1	Block 2	Block 3
Strategies/ methods	Dividing by 4 Learning to divide by 4 introduces some new vocabulary to children (dividend, divisor and quotient). In Year 2 children encountered two division structures, sharing and grouping. This continues in Year 3 and they interpret diagrams using both structures. Children should be familiar with the relationship triangle and these are used to promote links between multiplication facts and division facts. Teaching introduces children to using the multiplication grid to find division facts. Dividing by 8 Learning to divide by 8 continues to develop understanding of sharing and grouping. Children are encouraged to make direct comparisons between the two structures. They continue to use the multiplication grid to find division facts.	Dividing by partitioning Children's experience of division now extends to situations where the dividend is not in the multiplication tables they know. They learn to partition the dividend into multiples of the divisor. In the case of $56 \div 4$ one way to partition 56 would be 40 and 16 . Each part is then divided by 4 and the resulting quotients combined. $\begin{aligned} & 56 \div 4= \\ & 40 \div 4+16 \div 4= \\ & 10+4=14 \end{aligned}$ Clearly the dividend can be partitioned into any multiples of the divisor. $\begin{aligned} & 56 \div 4= \\ & 20 \div 4+36 \div 4= \\ & 5+9=14 \end{aligned}$	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 3	Block 1	Block 2	
	Strategies/ methods	Dividing by 3 The final lesson of the unit focuses on dividing by 3. The concepts (sharing and grouping) and representations (arrays, relationship triangles and multiplication grids) should be familiar to the children.	
	Finding unit fractions of quantities Children have had lots of experience finding halves, thirds and quarters from Year 2 and earlier in the Year 3 fractions unit. That experience is now extended to finding fifths, eighths and tenths (linked to multiplication tables they should know/be learning). Teaching stresses the connection between a unit fraction of a quantity and dividing that quantity by the denominator. Visual representations and careful use of language support understanding. Learning progresses from describing situations where the value of a part is visible to situations where the value of a part cannot be seen.		

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 3	Block 1	Block 2	
	Strategies/ methods	Multiplying by teen numbers Children have considerable experience of partitioning arrays to derive multiplication facts within the multiplication tables. This is now extended to derive facts beyond the multiplication tables, using facts from within them.	
Multiplying multiples of ten by 1-digit			
numbers Scaling is used to derive new facts from known facts. For example: $6 \times 3=18$ $60 \times 3=6$ tens $\times 3=18$ tens $=180$ Base ten is used to support conceptual understanding. As you say '18 tens' it is useful to write 180 (underlining the zero as you say 'tens'). Then read 18 tens/180 as one hundred and eighty/180.			

Year 3	Block 1	Block 2	Block 3
	Strategies/ methods	Multiplying 2-digit numbers by 4 Learning from the previous two steps, multiplying teen numbers and multiplying multiples of ten, is used to introduce children to the expanded column method for multiplication. This is done by solving a calculation using a known method (partitioning an array), then solving the same calculation with base 10 blocks and finally using the expanded column method. Teaching makes connections between all three representations. Multiplying 2-digit numbers by 8	
Arrays continue to support understanding, but the emphasis moves more towards base 10 supporting understanding of the expanded column method. Accurate use of language is key. For example: 5 ones $\times 8=40$ ones $=40$ 3 tens $\times 8=24$ tens = 240			

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 3-Block 1		$6 \times 5=30$	
$\underline{5 \times \text { table (r) }}$	6	$\times 5=$	30
	factor or multiplier	factor or multiplicand	product
	number of groups	number in each group	

$$
\begin{aligned}
& 2 \times 5=\square \\
& 4 \times 5=\square \\
& \square \times 5=30
\end{aligned}
$$

array on grid
Year 3-Block $1 \quad 6 \times 4=24$
$4 \times$ table

$$
4+\underset{\text { repeated addition }}{4+4}+4=\underset{\text { multiplication }}{6} \times 4
$$

$8 \times$ table

open arrays

```
Year 3-Block 1
7\times3=21
```

$3 \times$ table

Year 3 - Block 1
4,8 and $3 \times$ tables

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

	8	12	16	20	
		15	20	25	
	12		24	30	
	14	21		35	

	18	27	36	45
		30	40	50
	22		44	55
	24	36		60

multiplication grid


```
Year 3-Block 1
```

$32 \div 8=4$

Dividing by 8


```
Year 3-Block }
```

$12 \div 3=4$

Dividing by 3

partitive (sharing) division structure

quotitive (grouping) division structure

\times	1	2	3	4	8
1	1	2	3	4	8
2	2	4	6	8	16
3	3	6	9	12	24
4	4	8	12	16	32
5	5	10	15	20	40
6	6	12	18	24	48
7	7	14	21	28	56
8	8	16	24	32	64
9	9	18	27	36	72
10	10	20	30	40	80
11	11	22	33	44	88
12	12	24	36	48	96

Finding unit fractions of quantities

value of a part is visible

Kate has a jar of 24 sweets. $\frac{1}{8}$ of them are in red wrappers, the rest are in green.
How many sweets are in red wrappers?
problem solving

The whole is \square
The whole is divided into \square equal parts.
Each part is \square of the whole.
$\frac{1}{8}$ of 24 is \square.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

YEAR 3

Year 3 - Block $1 \quad 13 \times 8=104$

Multiplying by teen numbers

$13 \times 8=104$

```
Year 3-Block 1
6\times3=18 so 60 * 3 = 180
```

Multiplying multiples of ten by 1 -digit numbers

6 ones $\times 3=18$ ones $=18$

6 tens $\times 3=18$ tens $=180$
Year 3 - Block $1 \quad\left[\begin{array}{l}15 \times 4=60 \\ \hline\end{array}\right.$

Multiplying 2-digit numbers by 4

$$
15 \times 4=60
$$

5 ones $\times 4=20$ ones $=20$

Step 2: Multiply the tens
1 ten $\times 4=4$ tens $=40 \quad+$
Step 3: Combine the parts


```
Year 3-Block 1
35\times8=280
```

Multiplying 2-digit numbers by 8

$5 \times 4=20 \cdot 4 \times 5=20$

4, 8 and $3 \times$ tables (revision)

START | x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

$5 \times 4=20$
commutative property of multiplication on the multiplication grid

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 3-Block 2
```

Multiplying by teen numbers and multiplying multiples of ten (r)

partitioning an array to multiply

numeric representation of partitioning method

using known facts to multiply multiples of ten

CALCULATION POLICY FOR MULTTPLICATION AND DIVISION

```
Year 3- Block 2 68\times3=204
```

Multiplying 2-digit numbers by 3
A toy shop has 68 tricycles for sale.

How many wheels are there altogether on the tricycles?

Step 1: Multiply the ones
8 ones $\times 3=24$ ones $=24$
Step 2: Multiply the tens
6 tens $\times 3=18$ tens $=180$
Step 3: Combine the parts


```
Year 3-Block 2 24\div4=6
```

Dividing by 4,8 and 3 (r)

\times	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

$$
24 \div 4=6
$$

obtaining division facts from the multiplication grid

relationship triangles

```
Year 3-Block 2 6%3=2060\div3=20
```


Dividing multiples of ten

6 ones divided by $3=2$ ones
6 tens divided by $3=2$ tens
$60 \div 3=20$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION
Year 3-Block $2 \quad 56 \div 4=14$

Dividing by partitioning
The chairs need to be arranged in rows of four. How many rows will there be altogether?

pictorial representation

numeric representation dividing by partitioning

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 3-Block 3
36\times3 = 108
```

Multiplying 2-digit numbers (compact column method)

H	T	0
	3	6
\times		3
1	0	8
	1	

compact column method

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 3-Block 3
```

Dividing a 2-digit number (short division)
Both digits in the 2-digit number are multiples of the divisor
2-digit number is a multiple of the divisor, but the tens digit is not

base 10
partitioning the dividend
short division

Year 4			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNTT 1) - $8 \times$ table (r) - $6 \times$ table - $9 \times$ table - $7 \times$ table - Dividing by 6 - Dividing by 9 - Dividing by 7 FRACTIONS (UNIT 1) - Finding unit fractions of quantities - Finding non-unit fractions of quantities MULTIPLICATION AND DIVISION (UNIT 2) - $6 \times$ table (r) - Multiplying multiples of ten by 1 digit numbers - Column method for multiplying 2digit numbers by a 1-digit number (expanded and compact revision) - Multiplying 3 digit numbers (expanded method) - Division with remainders	MONEY AND DECIMALS (UNIT 1) - Multiplying decimals by ten - Dividing 2-digit numbers by ten - Dividing 1-digit and 2-digit numbers by ten - Multiplying and dividing 1 and 2 digit numbers by 100 MULTIPLICATION AND DIVISION (UNIT 3) - Column method for multiplying 3digit numbers by a 1 -digit number (expanded and compact) - Scaling division facts - Dividing 3-digit numbers (partitioning) - Dividing 3-digit numbers (short division - exchanging hundreds and tens) FRACTIONS (UNIT 2) n/a	CALCULATION UNIT - Multiplying 3 numbers - Scaling multiplication and division facts by 10 and 100 - Multiplying a 3-digit number by a 1 digit number (compact column method and partitioning) - Dividing 3-digit numbers (short division and partitioning) MONEY AND DECIMALS (UNIT 2) n/a

| Year 4 | | | Block 1 |
| :--- | :--- | :--- | :--- |\quad| Block 2 |
| :--- |

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	$6 \times$ table Learning about the $6 \times$ table makes links to the $3 \times$ table which children learnt in Year 3. Children encountered open arrays in Year 3 and are refamiliarised with the concept again. (In an open array, the squares or individual objects are not indicated within the interior of the array rectangle. An open array does not have to be drawn to scale.) They explore the pattern formed in the products of the $6 \times$ table. $\underline{9 \times \text { table }}$ Learning about the $9 \times$ table makes links to the $3 \times$ table which children learnt in Year 3 and revisited when they began to learn the $6 \times$ table. Understanding of the distributive property of multiplication is reinforced through partitioned arrays. Children continue to find multiplication statements to interpret open arrays. They also explore the pattern formed in the products of the $9 \times$ table.	Column method for multiplying 3-digit numbers by a 1 -digit number (expanded and compact) In Unit 2 children used the compact column method to multiply 2-digit numbers and the expanded method to multiply 3 -digit numbers. Now they learn to apply the compact method to the multiplication of 3 -digit numbers. Accurate use of language is key to ensuring conceptual understanding. For example: 6 ones $\times 3=18$ ones. 18 ones $=1$ ten and 8 ones. 2 tens $\times 3=6$ tens plus 1 ten $=7$ tens. 3 hundreds $\times 3=9$ hundreds.	Scaling multiplication and division facts by 10 and 100 Children have had considerable experience with scaling number facts by ten and some previous experience of scaling facts by one hundred. For example, known addition and subtraction facts were scaled by one hundred in + and - unit 1 . Some work on scaling by one hundred for multiplicative facts occurred in earlier \times and \div units. By the end of Year 4 children should have increasingly good recall of multiplication facts and the associated division facts. They now combine these facts with unitising in hundreds. They learn that in scenarios like 400×3 they can use an anchor fact, $4 \times 3=12$. Because one factor, 4 , will be multiplied by 100, then the resulting product must also be multiplied by 100. $4 \times 3=12 \text { so } 400 \times 3=1,200$ Accurate use of language is key to ensuring understanding. For example: 4 hundreds $\times 3=12$ hundreds $=12 \underline{00}=$ 1,200

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	$7 \times$ table Learning about the $7 \times$ table makes links to the 5 and $2 \times$ tables which children learnt in Year 2. Understanding is reinforced through partitioned arrays, eg: $\begin{aligned} & 4 \times 5=20 \\ & 4 \times 2=8 \\ & 4 \times 7=28 \end{aligned}$ Children find multiplication statements to interpret open arrays. After children have been introduced to the 6, 9 and 7 multiplication tables teachers need to provide plenty of opportunities for these - and all the others - to be practised. When children commit multiplication table facts to memory, they do so using a verbal sound pattern to associate the 3 relevant numbers, for example, "seven threes make twenty-one". It is important to provide opportunities for pupils to verbalise each multiplication fact as part of the process of developing fluency. (DfE Ready to Progress guidance.) Read them as 'One three is three; two threes make six; three threes make nine' etc.	Scaling division facts Base ten representations support understanding that when there is the same multiplicative change to the dividend and the divisor the resulting quotient stays the same. Scaling can help us to arrive at a simpler calculation to support answering a more complex calculation. For example: $42 \div 7$ is easier than $84 \div 14$ which is easier than $168 \div 28$.	Multiplying a 3-digit number by a 1 - digit number (compact column method and partitioning) Children consolidate understanding of the compact column method and revisit partitioning to secure multiplication of numbers with up to 3 digits. They do this within a problem solving approach and identify relationships between calculations. Dividing 3-digit numbers (short division and partitioning) Children consolidate understanding of the short division and revisit partitioning to secure division of numbers with up to 3 digits. They do this within a problem solving approach and identify relationships between calculations.

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Dividing by 6 Children continue to use language about division that was introduced in Year 3, (dividend, divisor and quotient). In Year 2 and Year 3 children encountered two division structures, sharing and grouping. This continues in Year 4 and they interpret diagrams using both structures. Children should be very familiar with the relationship triangle and these are used to promote links between multiplication facts and division facts. Teaching builds on work from Year 3 using the multiplication grid to find division facts.	Dividing by partitioning and using short division Children have used both methods previously. They are now applied to situations where the dividend is a 3digit number. Initial examples partition the dividend in a standard way. For example, 927 is partitioned into 900 and 27 when being divided by 9. Later examples partition the dividend in a non-standard way, prioritising partitioning into multiples of the divisor. For example, 891 is partitioned into 810 and 81 when being divided by 9 . Teaching makes connections between the methods.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	Block 3		
	Strategies/ methods	Dividing by 9 Learning to divide by 9 continues to develop understanding of the sharing and grouping structures. Children use the multiplication grid to derive division facts and interpret bar models. Dividing by 7	The final lesson of the unit focuses on dividing by 7. The concepts (sharing and grouping) and representations (arrays, relationship triangles and multiplication grids) should be familiar to the children. They solve problems involving the inverse.		
:---					

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Finding unit fractions of quantities Children have experience of finding halves, thirds, quarters, fifths, eighths and tenths linked to multiplication tables encountered in Year 2 and Year 3. Teaching stresses the connection between a unit fraction of a quantity and dividing that quantity by the denominator. That experience is now extended to finding sixths, sevenths and ninths (linked to multiplication tables they should know/be learning). Visual representations and careful use of language support understanding. Learning progresses from describing situations where the value of a part is visible to situations the value of a part cannot be seen. Finding non-unit fractions of quantities Learning now moves on to finding nonunit fractions of quantities. Teaching models using division to find the unit fraction and then multiplication to find multiples of the unit fraction.		

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	
	Strategies/ methods	Multiplying multiples of ten by 1-digit numbers (r) Understanding about using scaling to derive new multiplication facts from known facts is consolidated. For example: $5 \times 6=30$ $50 \times 6=5$ tens $\times 6=30$ tens = 300 Base ten is used to support conceptual understanding. As you say '30 tens' it is useful to write 300 (underlining the zero as you say 'tens'). Then read 30 tens/300 as three hundred/300. Column method for multiplying 2-digit	
numbers by a 1-digit number (r) Multiplying a 2-digit number is revised (from Y3) prior to moving on to using the expanded method to multiply a 3- digit number. Accurate use of language is key to ensuring conceptual understanding. For example: 6 ones $\times 3=18$ ones 18 ones = 1 ten and 8 ones Connections are made between the expanded column method and the compact column method.			

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4	Block 1	Block 2	Block 3
Strategies/ methods	Multiplying 3-digit numbers (expanded method) Multiplying a 3-digit number by a 1- digit number is learnt using a method children already know - the expanded column method. The only thing different is there are now three digits. Accurate use of language remains key. For example: 6 ones $\times 4=24$ ones. 24 ones = 2 tens and 4 ones. 4 tens $\times 4=16$ tens. 16 tens $=1$ hundred and 6 tens.		

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4			
	Block 1	Block 2	Block 3
Strategies/ methods	Division with remainders Until this point, all work on division has resulted in quotients that are whole numbers, i.e. there have been no remainders. Teaching now helps children recognise that a remainder arises when there is something 'left over' in a division calculation. Children need to recognise and understand why remainders only occur when the dividend is not a multiple of the divisor. This can be achieved by discussing the patterns seen when the dividend is incrementally increased by 1 while the divisor is kept the same. Teaching stresses the following points. - If the dividend is a multiple of the divisor there is no remainder. - If the dividend is not a multiple of the divisor, there is a remainder. - The remainder is always less than the divisor.		

distributive property of multiplication reinforced through partitioned array

\times	1	2	3	4	5	6	7	8	9	10	11	12
1												
2			6	8	-	4	8					
3												
4			8	-6	-	4	8					
5												
6												
7												
8												
9												
10												
11												
12												

commutative property

```
Year 4 - Block 1 4\times6=24
```


$6 \times$ table

$$
1 \times 3=\quad 3 \quad 1 \times 6=\quad 6
$$

$$
2 \times 3=6
$$

$$
2 \times 6=12
$$

$$
3 \times 3=\quad 9 \quad 3 \times 6=18
$$

$$
4 \times 3=12
$$

$$
4 \times 6=24
$$

making connections: $3 \times$ table and the $6 \times$ table


```
Year 4- Block 1 4*9=36
```


$9 \times$ table

making connections: $3 \times$ table and the $9 \times$ table

ALL:
PARTS:

open arrays
distributive property of multiplication
reinforced through partitioned array

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

$7 \times$ table

making connections: 5 and $2 \times$ tables and the $7 \times$ table

open array

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 4-Block 1		$18 \div 6=3$									
Dividing by 6											
\bigcirc	quotitive (grouping) division structure	relationship triangle	x	1		2	3	4	5	6	multiplication grid being used to find division fact
			1	1		2	3	4	5	6	
$\bigcirc \bigcirc$			2	2		4	6	8	10	12	
$\bigcirc \bigcirc$			3	3		6	9	12	15	18	
$\bigcirc \bigcirc \bigcirc$			4	4		8	12	16	20	24	
$\bigcirc \bigcirc$			5	5		10	15	20	25	30	
$\bigcirc \bigcirc$			6	6		12	18	24	30	36	
$\bigcirc \bigcirc \bigcirc$			7	7		14	21	28	35	42	
partitive (sharing) division structure			8	8		16	24	32	40	48	
			9	9		18	27	36	45	54	
			10	10		20	30	40	50	60	

```
36\div9=3
```

Dividing by 9

partitive (sharing) division structure

quotitive (grouping) division structure

\mathbf{x}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

bar model

```
Year 4-Block 1
28\div7=4
```

Dividing by 7

partitive (sharing) division structure

quotitive (grouping) division structure

relationship triangle

division as inverse of multiplication

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

value of a part is visible
The whole is \square
The whole is divided
 into \square equal parts.
Each part is \square of the whole. $\frac{1}{6}$ of 18 is \square.

Kate has a jar of 48 sweets.
1
$\frac{1}{4}$ of them are in red wrappers,
1
$\frac{1}{6}$ of them are in blue
wrappers and the rest are in green.
How many sweets are in green wrappers?

problem solving

Finding non-unit fractions of quantities

Liam has $£ 20$.
He spends $\frac{3}{5}$ at a funfair.
How much money does he spend?
value of a part is visible
value of a part is not visible
The whole is \square
The whole is divided into \square equal parts.
Each part is \square of the whole.
$\frac{3}{5}$ is shaded. $\frac{3}{5}$ of 20 is \square.
problem solving

Year 4 - Block 1
 $50 \times 6=300$

Multiplying multiples of ten by 1 -digit numbers (r)

base 10 supports understanding of scaling:
5 tens $\times 6=30$ tens

```
Year 4 - Block 1 56\times3=168
```

Column method for multiplying 2-digit numbers by a 1-digit number (r)

\times	5	6
\times		3
	1	8
1	5	0
1	6	8

expanded column method

Step 1: Multiply the ones
6 ones $\times 3=18$ ones
18 ones $=1$ ten and 8 ones
Step 2: Multiply the tens
5 tens $\times 3=15$ tens and 1 ten $=16$ tens

compact column method

95

```
Year 4 - Block 1 146\times4=300
```

Multiplying 3-digit numbers by a 1-digit number (expanded method)

expanded column method
Multiply the ones

Multiply the tens

Multiply the hundreds

Combine the parts

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 1
146\times4=300
```


Division with remainders

Total number of eggs (dividend)	Number of eggs in each carton (divisor)	Number of cartons (quotient)	Number of eggs left over (remainder)	Division sentence		
12	6	2	0	$12 \div 6=2$		
13	6	2	1	$13 \div 6=2 \mathrm{r} 1$		
14	6	2	2	$14 \div 6=2 \mathrm{r} 2$		
15	6	2	3	$15 \div 6=2 \mathrm{r} 3$		
16	6	2	4	$16 \div 6=2 \mathrm{r} 4$		
17	6	2	5	$17 \div 6=2 \mathrm{r} 5$		
18	6	3	0	$18 \div 6=3 \mathrm{r} 0$		
19	6	3	1	$19 \div 6=3 \mathrm{r} 1$	\quad	dividend (12) is a multiple of the divisor (6) -
:---:						
there is no remainder						
dividends (13-17) are not multiples						
of the divisor (6) -						
there are remainders	\quad	dividend (18) is a multiple of the divisor (6) -				
:---:						
there is no remainder						

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```

Multiplying and dividing by ten

Th	H	T	0	t	h
			0	1	
			1		
		1	0		
		0	0		

thousands	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
hundreds	100	200	300	400	500	600	700	800	900
tens	10	20	30	40	50	60	70	80	90
ones	1	2	3	4	5	6	7	8	9
tenths	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
hundredths	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

```
Year 4-Block 2
```

Multiplying and dividing 1- and 2-digit numbers by 100

thousands	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
hundreds	100	200	300	400	500	600	700	800	900
tens	10	20	30	40	50	60	70	80	90
ones	1	2	3	4	5	6	7	8	9
tenths	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
hundredths	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

Column method for multiplying 3-digit numbers by a 1 -digit number (expanded and compact)

Multiply the ones
6 ones $\times 3=18$ ones
be exchanged for 1 ten and 8 ones
Multiply the tens
$3=6$ tens and 1 ten $=7$ tens

Multiply the hundreds
3 hundreds $\times 3=9$ hundreds

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```

Scaling division facts
(an
same multiplicative change to the dividend and the divisor (scaled up
by 10) meaning the resulting
quotient stays the same

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 2
```


Dividing by partitioning and using short division

Year 4 - Block 3

Multiplying 3 numbers

\times	1	12	3	4	4	x	1	2	2	3	4	5	6		\times	1	2	3	,	4
1						1									1					
2	3	$\times 2$		2	2	2									2					
3						3									3					
4						4									4					
5		22	3		2										5					
6															6					
3	3	+	[4				2	-			$\underline{2}$			-		
		6	菏						$\sqrt{2}$		4	$1-[$								$\frac{1}{24}$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4-Block 3
```

Scaling multiplication and division facts by 10 and 100

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 4 - Block 3
```

Multiplying a 3-digit number by a 1-digit number (compact column method and partitioning)

		H	T	0	
		2	3	9	
	\times			5	
	1	1	9	5	
		1	4		

200	30	9
200	30	9
200	30	9
200	30	9
200	30	9

```
Year 4-Block 3
```

Dividing 3-digit numbers (short division and partitioning)

Year 5			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNTT 1) - $9 \times$ table (r) - Understanding division and recalling division facts - Remainders (\mathbf{r}) (The rest of Block 1 focuses on problem solving, factors, multiples, prime numbers and square numbers.) FRACTIONS (UNIT 1) - Finding non-unit fractions of quantities MULTIPLICATION AND DIVISION (UNTT 2) - Multiplying and dividing by 10 , 100 and 1,000 - Multiplying 4-digit numbers	MONEY AND DECIMALS (UNIT 1) n/a MULTIPLICATION AND DIVISION (UNTT 3) - Scaling multiplication and division facts by one-tenth and onehundredth - Multiplying 2-digit numbers by 2digit numbers (open arrays, grid method and expanded column method) - Dividing numbers with up to 4 digits by 8 - Dividing numbers with up to 4 digits FRACTIONS (UNIT 2) - Multiplying proper fractions by whole numbers - Multiplying mixed numbers by whole numbers	CALCULATION UNIT - Multiplying 3- and 4-digit numbers by 2-digit numbers - Division (r) - Division methods for division of numbers with up to 4 digits; related facts; remainders MONEY AND DECIMALS (UNIT 2) n/a

Year 5			Block 1

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Understanding division and recalling division facts Initial learning about division revisits the two division structures, sharing and grouping, encountered in earlier years. The multiplication grid is used to obtain division facts. Children interpret the same array to obtain different division facts, eg: 56 squares put into groups of 7 results in 8 groups. 56 squares put into groups of 8 results in 7 groups. Children continue to use partitioning to obtain division facts that cannot be derived automatically from multiplication facts. This is done by partitioning the dividend into parts that are multiples of the divisor, eg: $117 \div 9=90 \div 9+27 \div 9$. Initially arrays are used to support understanding of the partitioning. Later numeric representations are used. Another method for division, using factors, is also encountered.	Multiplying a 2-digit number by a 2- digit number (open arrays, grid method and expanded column method) Learning to multiply a 2-digit number by a 2-digit number is introduced with an array. (The initial array enables children to see all the parts - teaching moves on to using open arrays.) The open array supports conceptual understanding of the process of multiplying a 2-digit number by a 2digit number. The grid method reflects the open array very strongly, with the key difference being that the size of the parts in the grid method are not to scale. Children are very familiar with the expanded column method for multiplying a number by a 1-digit number and the expanded method is now used to multiply a 2-digit number by a 2-digit number. Teaching models accurate use of language to ensure conceptual understanding	They also have considerable experience of multiplying by multiples of ten, but not recording in the column layout. Again, accurate use of language is key: 2 ones $\times 20=40$ ones $=4$ tens; 3 tens $\times 20=60$ tens $=6$ hundreds $=$ 600; 1 hundred $\times 20=20$ hundreds $=2,000$ The grid method continues to be used. Whilst it is not the prime strategy, children are encouraged to make connections between the grid representation and the algorithm for long multiplication. Initial examples have no exchanging in the multiplication part of the algorithm. Exchanging is introduced later on.

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Remainders Remainders were introduced in Year 4 (Block 1 (Unit 2). Revisit key teaching points: - if the dividend is a multiple of the divisor there is no remainder; - if the dividend is not a multiple of the divisor there is a remainder; - the remainder is always less than the divisor. Finding non-unit fractions of quantities Children were introduced to finding non-unit fractions of quantities in Year 4. This was done using division facts linked to multiplication tables from Year 2 and Year 3. In Year 5, children find non-unit fractions of quantities using division facts linked to the 6,9 and 7 multiplication tables. They also find non-unit fractions of quantities for calculations that go beyond known multiplication table facts.	Dividing numbers with up to 4 digits Children have experience of all three methods used. The difference is that they are now applied to numbers with up to 4 -digits. Partitioning supports conceptual understanding about division. The dividend is partitioned into parts that are divisible by the divisor. There is no set number of parts to partition the dividend into. Children need to think about partitioning in non-standard ways. Understanding of the short division method is enhanced by accurate use of language.	Methods for division (r) Learning about division consolidates understanding of division from earlier in the year. Teaching revisits division of numbers with 4 digits, related facts (same multiplicative change to the dividend and the divisor meaning the resulting quotient stays the same) and remainders.

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Multiplying and dividing by 10,100 and 1,000 Multiplying and dividing by 10 and 100 was introduced in Money and Decimals (Unit 1) in Year 4. In Year 5 learning is extended to include multiplying and dividing by 1,000 . Teaching develops understanding of relationships between powers of ten, and models describing them using scaling language, eg: ... times the size. Contexts involve both whole numbers and decimal numbers.	Multiplying proper fractions by whole numbers Initial work on multiplying proper fractions focuses on using repeated addition and the associated multiplication expression. The emphasis is on the conceptual understanding associated with multiplying fractions and to begin with children are not encouraged to find the answer/product. Work begins with unit fractions and progresses to nonunit fractions. The pictorial representations are then removed and learning continues in the same manner. Next finding the product (answer) is introduced. Children learn that the numerator of the fraction is multiplied by the whole number and the denominator remains the same. Learning moves on to consider examples where the product is more than one whole.	

Year 5			
	Block 1	Block 2	Block 3
Strategies/ methods	Multiplying 4-digit numbers Multiplying a 3-digit number by a 1 digit number was learnt during Year 4. Learning to multiply 4 -digit numbers begins with the expanded column method and then moves to the compact method. The expanded method supports conceptual understanding of the compact column method. Accurate use of language is key to ensuring conceptual understanding. For example: 9 ones $\times 3=27$ ones. 27 ones $=2$ tens and 7 ones. 6 tens $\times 3=18$ tens. Plus the 2 tens that were exchanged which makes 20 tens. 20 tens $=2$ hundreds and 0 tens. etc	Multiplying mixed numbers by whole numbers Learning to multiply mixed numbers by whole numbers begins with examples where the fractional parts multiply to less than one whole. For example: $3 \times 23 / 10$ The core strategy modelled is to partition the mixed number into a whole number and a fraction. Multiply the wholes. Multiply the fractional parts. Combine. Next children encounter examples where the fractional parts multiply to more than one whole. For example: $3 \times 24 / 10$ The same partitioning procedure is used. The initial combining results in the non-conventional format of a mixed number with an improper fractional part. (In this instance, 12 $28 / 20$.) Whilst this is structurally correct, explain that convention means we write the mixed number so the numerator is less than the denominator.	

$9 \times$ table (r)

ALL:
PARTS:
distributive property of multiplication reinforced through partitioned array

\times	1	2	3	4	5	6	7	8	9	10	11	12
1												
2					0							
3						6						
4					-		6	3				
5				x								
6												
7												
8												
9												
10												
11												
12												

commutative property

Understanding division and recalling division facts

interpreting an array in different ways

```
Year 5 - Block 1 117 %9=13
```

Understanding division and recalling division facts (ctd)

partitioning the dividend to divide
using an array

partitioning the dividend to divide -
numeric representations

$117 \div 9=13$
$90 \div 9=10$
$27 \div 9=3$

$$
\begin{array}{rccccc}
\hline 117 & \div & 9 & = & & \\
\hline 117 & \div & 3 & \div & 3 & = \\
\hline & \ddots & & \\
& \ddots & \ldots \circ^{\circ} & & & \\
\hline & 39 & \div & 3 & = & 13 \\
\hline
\end{array}
$$

Remainders

48	\div	6	=	8	r	0			50	\div		6		8	,	r	2

dividend is a multiple of the divisor there is no remainder
dividend is not a multiple of the divisor there is a remainder

value of a part is visible
The whole is \qquad
The whole is divided into \square equal parts.
Each part is \square of the whole. $\frac{5}{6}$ is shaded. $\frac{5}{6}$ of 18 is \square.

value of a part is not visible
The whole is \square.
The whole is divided into \square equal parts.

Liam has 180 stamps. $\frac{2}{9}$ of the stamps are from France.
$\frac{1}{3}$ are from England.
How many stamps are not from France or England?

problem solving

$\frac{4}{9}$ is shaded. $\frac{4}{9}$ of 72 is \square.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 5-Block 1
```

Multiplying and dividing by 10, 100 and 1,000

When you multiply a number by 1,000 , the value of each digit becomes one thousand times bigger, so each digit moves three places to the left.

M HTh Th Th H	T	O	t	h

When you divide a number by 1,000 , the value of each digit becomes one thousand times smaller, so each digit moves three places to the right.

$$
3,069 \times 3=9,207
$$

Multiplying and dividing by 10, 100 and 1,000

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 5-Block 2
```

Scaling multiplication and division facts by one-tenth and one-hundredth

$4 \times 3=12$ ones $\times 3=12$

$$
\begin{array}{cc}
0.4 \times 3= & 0.04 \times 3= \\
\frac{4}{10} \times 3=\frac{12}{10}=1 \frac{2}{10}= & \frac{4}{100} \times 3=\frac{12}{100}=\frac{1}{10}+\frac{2}{100}= \\
1.2 & 0.12
\end{array}
$$

```
Year 5 - Block 2 49\times29=1,421
```

Multiplying a 2-digit number by a 2-digit number (open arrays, grid method and expanded column method)

		$49 \times 29=$			
\times	40	9			
20	800	180	980		
9	360	81	441		
					1,421

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 5 - Block $2 \quad 3,258 \div 6=543$

Dividing numbers with up to 4 digits

$$
\begin{aligned}
& 3,258 \div 6=3,258 \div 2 \div 3 \\
& 3,258 \div 2=1,629 \\
& 1,629 \div 3=543 \\
& \text { using factors }
\end{aligned}
$$

partitioning the dividend

How many groups of 6 can we make from 3 thousands? No groups of 6...

Exchange 3 thousands for 30 hundreds.
How many groups of 6 can we make from 32 hundreds? 5 groups of 6 hundreds with 2 hundreds left over.
2 hundreds $=20$ tens

How many groups of 6 can we make from 25 tens? 4 groups of 6 tens with 1 ten left over.
1 ten = 10 ones

How many groups of 6 can we make from 18 ones? 3 groups of 6 ones.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 5-Block 2
```

Multiplying proper fractions by whole numbers

repeated addition and the associated multiplication expression
repeated addition and the associated multiplication expression -
finding the product (answer)
 non-unit fractions
repeated addition and the associated multiplication expression -non-unit fractions and no pictorial representations non-unit fractions and no pictorial representations

Year 5 - Block 2

Multiplying proper fractions by whole numbers (ctd)

repeated addition, the associated multiplication expression and the product - where the product is more than one whole pictorial representation supports

$$
\frac{9}{15}+\frac{9}{15}+\frac{9}{15}+\frac{9}{15}=\square
$$

repeated addition, the associated multiplication expression and the product - where the product is more than one whole no pictorial representation

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 5-Block 2
```

Multiplying mixed numbers by whole numbers

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 5 - Block 3 132\times23=3,036
```

Multiplying 3-and 4-digit numbers bv 2-digit numbers

x	100	30	2	
20	2,000	600	40	2,640
3	300	90	6	396

```
Year 5- Block 3 4,571\div7=653
```

Methods for division (r)

				6	5	3	
		7	$A, 45$	37	21		

4 thousands $\div 7$

Not enough thousands... let's exchange 4 thousands for 40 hundreds.

45 hundreds $\div 7$
6 groups of 7 hundreds. 3 hundreds left over.

37 tens $\div 7$
5 groups of 7 tens. 2 tens left over.

21 ones $\div 7$
3 groups of 7 ones.

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Calculation content	MULTIPLICATION AND DIVISION (UNIT 1) - $7 \times$ table (r) - Efficient strategies for multiplication - Efficient strategies for division - Multiplying 3- and 4-digit numbers by 2-digit numbers (r) FRACTIONS (UNIT 1) - Finding fractions of quantities MULTIPLICATION AND DIVISION (UNTT 2) - Dividing by a 2-digit number Factors Partitioning Short division Long division	MONEY AND DECIMALS (UNIT 2) - \times and \div numbers by 10,100 and 1,000 (r) MULTIPLICATION AND DIVISION (UNIT 3) n / a All work is problem solving. FRACTIONS (UNIT 2) - Multiplying fractions - Multiplying proper fractions by whole numbers - Multiplying mixed numbers by whole numbers - Multiplying pairs of proper fractions - Dividing fractions - Dividend is a fraction-divisor is whole number; numerator is a multiple of the whole number Dividend is a whole number divisor is a fraction Dividing a fraction by a whole number where numerator is not multiple of whole number	CALCULATION UNIT - Derive related calculations MONEY AND DECIMALS (UNIT 2) n/a

Year 6			Block 1

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Efficient strategies for multiplication Some calculations, often those with larger numbers, may be best solved with column methods. Understanding about how multiplication works is enhanced through familiarity with a range of methods, which also support mental calculation with smaller numbers. Efficient strategies for multiplication include: - column methods; - partitioning methods; - factors; - relationships; - compensation. Certain calculations will lend themselves more readily to one or more of the above, so encouraging proficiency in more than one method is important. It also deepens understanding.	Multiplying proper fractions and mixed numbers by whole numbers (r) Teaching about the multiplication of fractions begins by revisiting learning from Year 5 about multiplying fractions by whole numbers. Multiplying proper fractions by whole numbers The focus here is on understanding that we multiply the numerator by the whole number; we do not multiply the denominators. Repeated addition is used to help reinforce the concept: eight-tenths plus eight-tenths plus eight-tenths = twenty-four tenths $=2$ and four-tenths	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Efficient strategies for division As with multiplication, some calculations, often those with larger numbers, may be best solved with column methods. Understanding about how division works is enhanced through familiarity with a range of methods, which also support mental calculation with smaller numbers. Efficient strategies for division include: - column methods; - partitioning methods; - factors; - relationships.	Multiplying mixed fractions by whole numbers Partition 3 7/20 into whole parts and fractional parts. Multiply the wholes. Multiply the fractional parts. Combine. The initial combining results in the non-conventional format of a mixed number with an improper fractional part. In this instance, 12 28/20. Whilst this is structurally correct, explain that convention means we write the mixed number so the numerator is less than the denominator.	

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Additional understanding about division Children have learnt about multiplicative change to the dividend and the divisor meaning the resulting quotient changes by the same scale factor. They also learn that: - if there is a multiplicative change to the dividend and the divisor remains the same, the quotient changes by the same scale factor; - but if there is a multiplicative decrease to the divisor and the dividend remains the same, the quotient increases by the same scale factor; - and if there is a multiplicative increase to the divisor and the dividend remains the same, the quotient decreases by the same scale factor.	Multiplying pairs of proper fractions Learning about multiplying pairs of proper fractions begins with addressing the misconception that multiplication makes things bigger. Teaching highlights that multiplication can make things bigger, result in no change or can make things smaller. $\begin{aligned} & 2 \times 2=4 \\ & 1 \times 1=1 \\ & 1 / 2 \times 1 / 2=1 / 4 \end{aligned}$ Teaching highlights the varied vocabulary used for the multiplication symbol and teaches children that one word that can be used for it is 'of'. $1 / 2$ of $1 / 2=1 / 4$ Children learn the rules for multiplying pairs of proper fractions. [1] Multiply the numerators of the fractions to get the new numerator. [2] Multiply the denominators of the fractions to get the new denominator. [3] Simplify if needed. Conceptual understanding is developed by explaining how multiplication equations connect to visual representations.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Multiplying 3- and 4-digit numbers by 2-digit numbers (r) Unit 1 ends with work to consolidate understanding of long multiplication. Calculations are represented using arrays to ensure conceptual understanding of the multiplication process and attribute meaning to the long multiplication procedure. The array is used on its own and then alongside the formal algorithm for long multiplication. The process for each is the same: multiply the ones; multiply the tens; multiply the hundreds. Accurate use of language is key. Children are very familiar with multiplying by ones in the column layout, eg: 5 ones $\times 4=20$ ones $=2$ tens $=20$; 3 tens $\times 4=12$ tens $=120$; 1 hundred $\times 4=4$ hundreds.	Dividing a fraction by a whole number Learning to divide a fraction by a whole number begins with examples where the dividend is a fraction, the divisor is whole number and the numerator is a multiple of the whole number. For example: $6 / 7 \div 3$ Pictorial representations support conceptual understanding that we are not dividing the denominator. Children need to understand that the denominator tells us about the size of the parts and the numerator tells us how many parts there are.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Again, accurate use of language is key: 5 ones $\times 20=100$ ones $=1$ hundred $=$ 100; 3 tens $\times 20=60$ tens $=6$ hundreds $=$ 600; 1 hundred $\times 20=20$ hundreds $=2000$. The grid method continues to be used. Whilst it is not the prime strategy, children are encouraged to make connections between the grid representation and the algorithm for long multiplication.	Dividing a whole number by a unit fraction Now the examples have the dividend as a whole number and the divisor is a fraction. For example: $4 \div 1 / 3$. Pictorial representations support conceptual understanding. The key teaching point here is about visualising how many thirds are 'inside' the dividend. Start by getting the children to think about how many thirds are in one. Then build that up to how many thirds are in two, three and four. Highlight the relationship between the whole number and the denominator. Finally, ask if it can be solved another way. - Decimal equivalents. These will not be useful here as we are dividing by one-third. However they would be if the calculation were $4 \div 1 / 4$, for example. - Scaling. Multiply the fraction by 3 to obtain 1 , resulting in: $12 \div 1=$ 12.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Finding fractions of quantities Children have had lots of experience of finding unit fractions of quantities and, from Year 4, finding non-unit fractions of quantities. The procedure for finding fractions of quantities should be secure. In Year 6 the emphasis is largely on solving problems involving non-unit fractions of quantities. Intelligent calculation practices are also promoted. For example, finding fivesixths of $£ 15$ is not best done by dividing $£ 15$ by 6 and multiplying the result by 5 . Finding one-sixth is far easier by finding one-third and then halving this to obtain one-sixth. Now five-sixths can be obtained.	Dividing a fraction by a whole number The final step in learning to divide a fraction by a whole number involves examples where the dividend is a fraction, the divisor is whole number and the numerator is not a multiple of the whole number. For example: $6 / 7 \div 4$ Teaching helps children to understand that we need to find an equivalent fraction (in this case 12/14) where we can divide the numerator by the denominator. Pictorial representations support conceptual understanding of this process.	

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6	Block 1	Block 2	Block 3		
	Strategies/ methods	Dividing by a 2-digit number using factors and using partitioning			
Partitioning supports conceptual					
understanding about division. The					
dividend is partitioned into parts that					
are divisible by the divisor. There is					
no set number of parts to partition the					
dividend into. In the example shown,					
using chunks of 330 makes things fairly					
straightforward.					
Dividing by using factors can be					
effective for situations where the					
dividend is not a prime number. In the					
example shown factors of 33 are used.					
It does not matter which factor					
becomes the divisor first of all. Here,					
it makes sense to divide by 3 first and					
then 11.				\quad	(
:---					

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Dividing by a 2-digit number using short and long division It is important that children realise that both short and long division can be used to divide when dividing with a 2-digit number as the divisor. One of the challenges that arises when dividing by a 2-digit number is that we cannot use division facts from our known multiplication tables. To eliminate this challenge, encourage children to make lists of multiples of the divisor and remind them of simple strategies for making this list. For example, if the divisor is 13 we can add 10 and then add 3. Use of language is key to ensuring conceptual understanding. (continued on next page)		

Year 6			
	Block 1	Block 2	Block 3
Strategies/ methods	Dividing by a 2-digit number using short and long division (ctd) Language for $247 \div 13$ 2 hundreds $\div 13=$... Not enough hundreds. We need to exchange 2 hundreds for 20 tens. 24 tens $\div 13=1$ group of 13 tens with 11 tens left over. Exchange 11 tens for 110 ones. We now have 117 ones $\div 13$. Let's use the list of multiples of 13 to help find the answer. The language used is the same for both methods. The long division layout lets you see the remainders more easily - but this can also be confusing for some children. Where we show the regrouped digits is different in the two methods: in short division we write the regrouped digit/s in the bus stop; in long division we bring the digits down.		

```
Year 6-Block }
6\times7=42
```


$7 \times$ table (r)

ALL:

PARTS:
distributive property of multiplication reinforced through partitioned array

commutative property

\times	1	2	3	4	5	6	7	8	9	10
1										
2		6	\times	7	$=$	4	2			
3										
4		7	\times	6	$=$	4	2			
5										
6										
7										
8										
9										
10										

finding missing products on parts of the multiplication grids

Efficient strategies for multiplication

4	4	\times	8	$=$			
4	0	\times	8	$=$	3	2	0
	4	\times	8	$=$		3	2
					3	5	2

partitioning the first factor

2	2	\times	1	6	$=$		
4	4	\times	8	$=$	3	5	2

using relationships

using factors

using compensation

```
Year 6-Block 1
216\div6=36
```


Efficient strategies for division

2	1	6	\div	6	$=$			
1	8	0	\div	6	$=$	3	0	
	3	6	\div	6	$=$		6	
						3	6	

partitioning the dividend

using factors

using relationships -
multiplicative change to the dividend and the divisor (scaled down by 2) meaning the resulting quotient is also scaled

\div| $\mathbf{2}$ | $\mathbf{1}$ | 6 | \div | 6 | \equiv | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 7 | 2 | \div | 2 | $=$ | 3 | 6 |

using relationships -
multiplicative change to the dividend and the divisor (scaled down by 3) meaning the resulting quotient is also scaled

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 6-Block 1
```


Additional understanding about division

multiplicative change to the dividend and the divisor remains the same, the quotient changes by the same scale factor

$\mathbf{2}$	$\mathbf{1}$	$\mathbf{6}$	\div	$\mathbf{6}$	$=$	3	$\mathbf{6}$		
$\mathbf{2}$	$\mathbf{1}$	6	\div	3	$=$	7	2		
2	1	6	\div	1	5	$=$	1	4	4

multiplicative decrease to the divisor and the dividend remains the same, the quotient increases by the same scale factor
multiplicative increase to the divisor and the dividend remains the same, the quotient decreases by the same scale factor

```
Year 6 - Block 1 135\times24=3,240
```

Multiplying 3- and 4-digit numbers by 2-digit numbers (r)

x	100	30	5	
20	2,000	600	100	2,700
4	400	120	20	540

```
Year 6-Block 1
```


Finding fractions of quantities

$1 / 3$ of $£ 15.00=£ 5.00$
$1 / 6$ of $£ 15.00=£ 2.50$
$5 / 6$ of $£ 15.00=£ 12.50$

procedural variation used to support calculation process

The shape needs to be coloured in as shown below.
2/5 = red; 3/10 = orange; 1/6 = green; 2/15 = blue.
Calculate the number of squares needed for each colour.
solving increasingly complex problems
continuing to use bar model representations to support problem solving

Ling had some money.
She spent $£ 1.10$ on a drink.
She spent $£ 1.90$ on a sandwich.
She has three fifths of her money left.
How much money did Ling have to start with?

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 6 - Block 1 792\div33=24
```

Dividing by a 2-digit number using factors and using partitioning

Dividing by a 2-digit number using short and long division

			0	1	9						0	1	9

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

```
Year 6- Block 2
```

x and \div numbers by 10,100 and $1,000(r)$

$3 \div 10$	Th	H	T	0	t	h	th
				3 0			
	Th	H	T	0	t	h	th
$3 \div 100$				3 0	0	3	

5.3×10	
5.3×100	
$5.3 \times 1,000$	
0.53×10	
530×100	
$530 \times 1,000$	530,000
	53,300
	53,000

$3 \div 1,000$$\quad$| Th | H | T | 0 | t | h | $t h$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 3 | | | |
| | | | 0 | 0 | 0 | 3 |

$230 \div 10=\square \div 100$
$230 \div 100=23 \div \square$
$\square \div 1,000=2.3 \div 100$

```
Year 6-Block 2
```

Multiplying proper fractions and mixed numbers by whole numbers (r)

$$
\frac{8}{10}+\frac{8}{10}+\frac{8}{10}=\square=\square
$$

multiplying proper fractions by whole numbers

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6 - Block 2

Multiplying pairs of proper fractions

$$
\frac{2}{3} \times \frac{1}{2}=\frac{2}{6}=\frac{1}{3}
$$

$$
2 / 3 \text { of } 1 / 2=2 / 6=1 / 3
$$

conceptual understanding is developed by explaining how multiplication equations connect to visual representations

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6 - Block 2

Dividing a fraction by a whole number

(dividend is a fraction - divisor is a whole number - numerator is a multiple of the whole number)

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6 - Block 2
Dividing a whole number by a unit fraction
(dividend is a whole number - divisor is a fraction)

$$
\begin{aligned}
& 4 \div \frac{1}{3}=12 \\
& \text { dividend divisor } \\
& \text { is a is a } \\
& \text { whole fraction } \\
& \text { number }
\end{aligned}
$$

CALCULATION POLICY FOR MULTIPLICATION AND DIVISION

Year 6 - Block 2

Dividing a fraction by a whole number

(dividend is a fraction - divisor is a whole number - numerator is not a multiple of the whole number)

numerator
is not a
multiple of the whole number -
so we need an equivalent fraction where the numerator is: twelve-fourteenths

$$
\begin{aligned}
& \text { F } \div 4= \\
& \text { dividend divisor } \\
& \text { is a } \begin{array}{c}
\text { is a } \\
\text { fraction whole } \\
\text { number }
\end{array}
\end{aligned}
$$

```
Year 6-Block 3
```


Derive related calculations

if one factor is multiplied by a number, then the other factor must de divided by the same number for the product to stay the same

$0.08 \times 120=9.6$
if one factor is multiplied by a number, and the other factor kept the same, then the product must be multiplied by the same number

